

Deep Mining Scholarly Big Data in the Large Language Model Era

DR. JIAN WU

ASSOCIATE PROFESSOR OF COMPUTER SCIENCE

OLD DOMINION UNIVERSITY, VIRGINIA, UNITED STATES

Self-Introduction

2004: B.S. in Physics and Astronomy

Hubble Space Telescope

2011: Ph.D. in Astronomy and Astrophysics

Big Data



Sloan Digital Sky Survey

2011-2017: Postdoctoral fellow, Information Sciences and Technology

2017-2018: Assistant Teaching Professor. Information Sciences and Technology

2018-2025: Assistant Professor (tenure track), Computer Science

2025-: Associate Professor (effective July 25), Computer Science

Scholarly Big Data + Al

ETDs

CiteSeer^X

SCI-K@ISWC'25

Journals

Conference Proceedings

Technical Drawings X: @FANCHYNA

BSKY: @FANCHYNA

Keyphrases

KGs

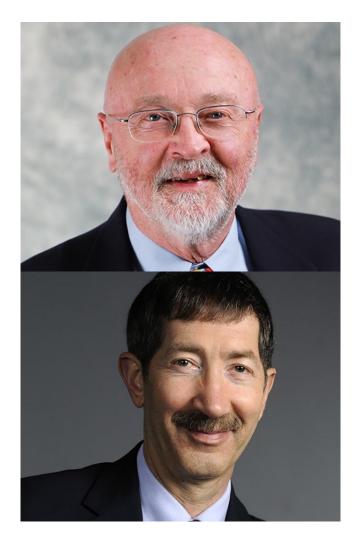
2

Figures

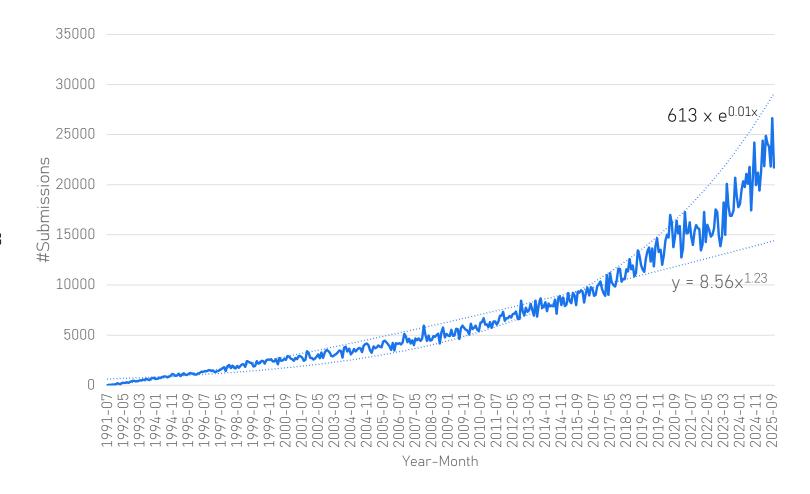
Tables

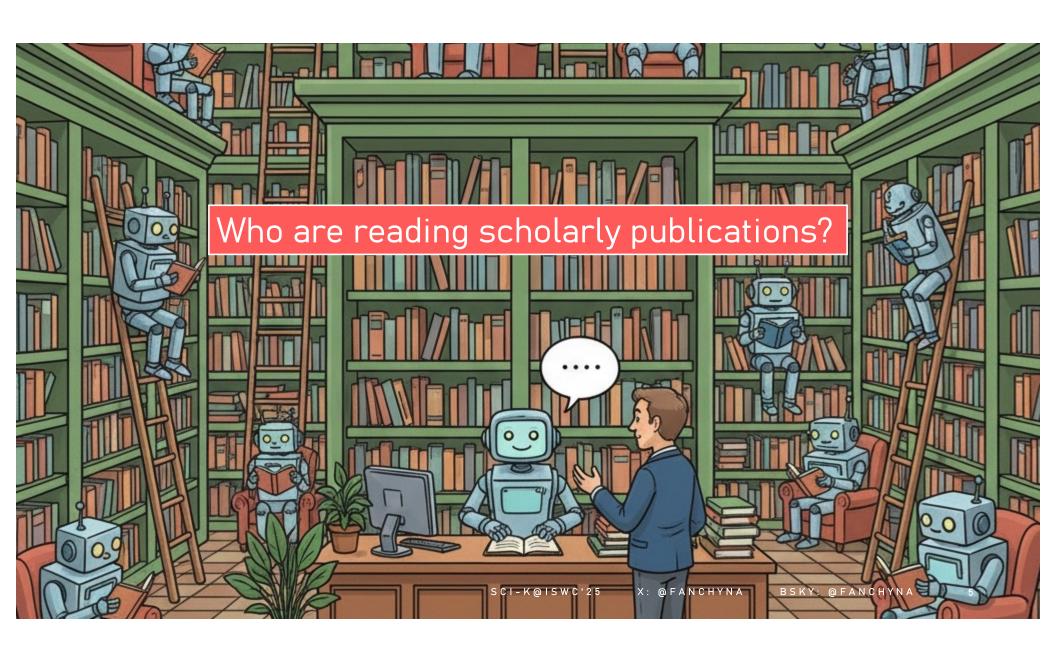
Acknowledgments

- Dr. C. Lee Giles (Pennsylvania State University)
 - Pl of CiteSeerX
 - Eminent David Reese Professor of Information Sciences and Technology
 - A pioneer of AI and its applications on Scholarly Big Data
- Dr. Edward A. Fox (Virginia Tech)
 - Director of NDI TD
 - Eminent Professor of Computer Science
 - An advocate of collecting, mining, and improving electronic theses and dissertations (ETDs) and building communities



- This chart displays the number of new submissions received during each month since August 1991 (after 34.3 years).
- Total number of submissions as of October 27, 2025
 = 2,867,652.





Scholarly Big Data

- First mentioned in Dr. Lee Giles' keynote for CIKM in 2013
- Usually refers to the large-scale digital data generated throughout the scholarly communication and research activity.
 - Publications and citations, e.g., proceedings, references
 - Research artifacts, e.g., data, software
 - Scholarly communications, e.g., reviews
 - Scientometric, e.g., citation counts, h-index
 - Researcher and institutional metadata, e.g., author profiles

Mining Scholarly Big Data

- Information Extraction
 - Metadata extraction (title, author, keywords)
 - Table and Figure extraction
 - Citation extraction
 - Knowledge extraction (entities, relations)
 - Data extraction (table data, figure data)
 - Reasoning extraction (hypothesis, evidence)
- Information Classification
 - Document classification (subject category)
 - Scientific Claim Verification (true/false, stance)
 - Author name disambiguation

- Information Generation
 - Figure captioning
 - Hypothesis generation
- Applications
 - Reproducibility and replicability assessment
 - Data compilation
 - Building digital libraries and datasets

4 Retrospective Eras

- Metadata-centric Era (1990s-2010s)
- Semantic Enrichment Era (2010s-2018)
- Content-based Mining Era (2018-2022)
- Semantic Reasoning Era (2023 present)

Metadata-centric Era (1990s-2010s)

- Driven by digital libraries and availability of network data
- Metadata: Titles, authors, publication year, venues, citations, etc.

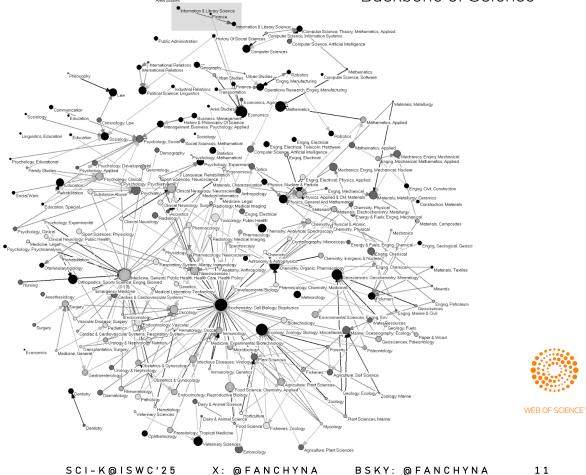
Digital Libraries

- Documents are organized in a connected manner, by inverse index, citation networks, coauthor networks, or other structures so that they are more findable, navigable, and usually provide meta-level knowledge.
 - NDLTD (1996 present)
 - Web of Science (1997 present)
 - CiteSeer (1998 present)
 - Google Scholar (2007 present)
 - AMiner (2008 present)

Early Studies on Citation Networks

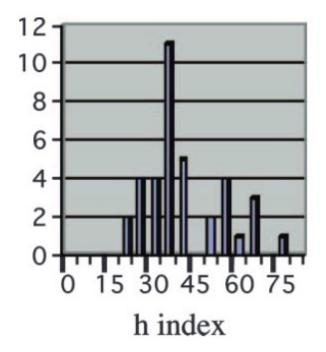
Boyack, Klavans, and Böner (2005) Mapping the Backbone of Science

- Map of the backbone of science with 212 clusters comprising 7000 journals.
- Circle sizes (area) denote the number of journals in each cluster.
- Circle color depicts the independence of each cluster, with darker colors depicting greater independence.
- Dominant cluster-to-cluster citing patterns are indicated by arrows. Arrows show all relationships where the citing cluster gives more than 7.5% of its total citations to the cited cluster. with darker arrows indicating a greater fraction of citations given by the citing cluster.



H-index: an Impact Evaluation Metric

Histogram giving the number of Nobel prize recipients in physics in the last 20 years versus their h index.



Hirsch (2005 PNAS) An index to quantify an individual's scientific research output

SCI-K@ISWC'25

X: @FANCHYNA

BSKY: @FANCHYNA

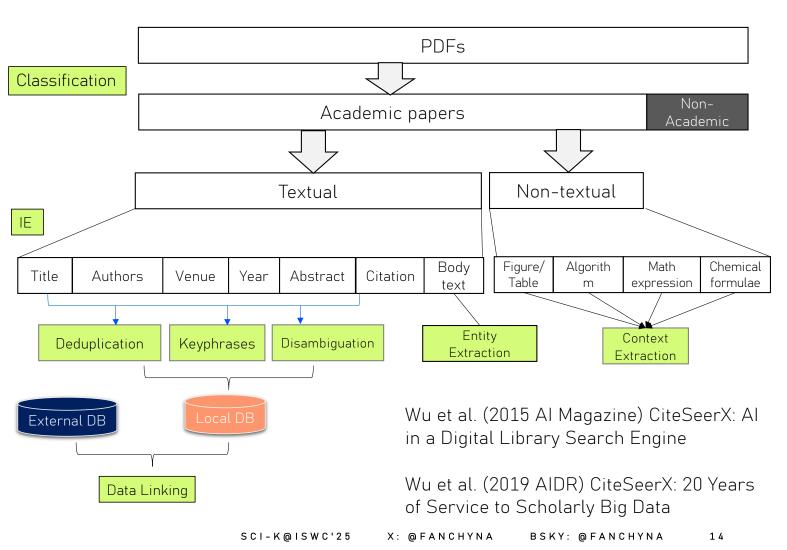
12

Semantic Enrichment Era (2010-2018)

- Machine learning and deep learning
- Entity extraction and linking (knowledge graph)
- Subject category classification
- Keyphrase extraction
- Digital Libraries and Datasets:
 - OpenAIRE (2011 -- present)
 - CORE (2012 -- present)
 - Semantic Scholar (2015 -- present)
 - Microsoft Academic Graph (2015 2021)

CiteSeer^x

Al in CiteSeerX

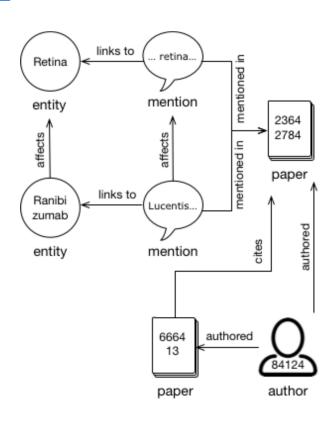


Semantic Scholar

- Basic functionalities
 - Search
 - Browse
 - Download

- Al-powered functionalities
 - TLDR summarization
 - Citation intent and influence classifications
 - Field of study classification
 - Paper recommendation
 - Metrics (most influential citations, etc.)

Building Digital Library Knowledge Graphs



Part of the literature graph.

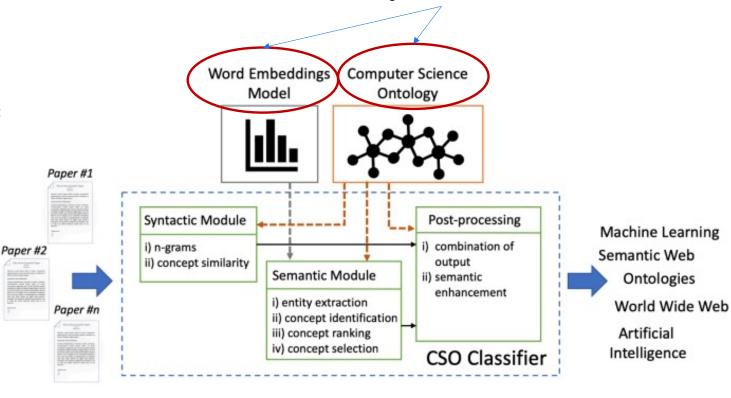
- Publisher provided metadata is often noisy and incomplete, it is often necessary to directly extract metadata from the PDFs.
- Machine Learning is heavily used for metadata extraction, entity extraction, and linking.
- GROBID (Lopez et al. 2009): CRF
- ScienceParse (AI2) BiLSTM

Ammar et al. (2018 NAACL-HLT) Construction of the Literature Graph in Semantic Scholar

Topic Classification

In addition to ontology, word embedding was used.

The architecture of the workflow of the Computer Science Ontology (CSO) classifier.



Salatino et al. (TPDL 2019) The CSO Classifier: Ontology-Driven Detection of Research Topics in Scholarly Articles

SCI-K@ISWC'25

X: @FANCHYNA

BSKY: @FANCHYNA

Content-based Mining Era (2018-2022)

- Mining components constituting scholarly publications
- Project 1: SCORE: Automatically assign explainable "confidence scores" to Social and Behavioral Science (SBS) research results and claims
 - Theory/model extraction
 - Open Access Datasets and Software (OADS) URL extraction
 - Application of mined features: reproducibility and replicability assessment
- Project 2: Uncertainty-aware data extraction from complex scientific tables
 - Conformal prediction for quantifying the uncertainty of table data extraction

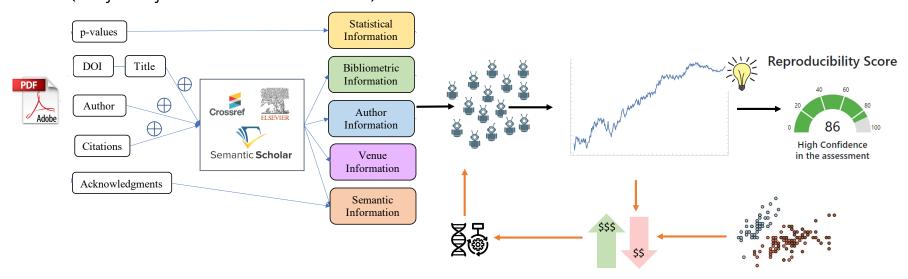
Why Assessing Reproducibility and Replicability?

- Reproducibility: same data, same method
- Replicability: different data, same method
- Reproducibility and replicability crisis in
 - Social and Behavioral Science (SBS) (Camerer 2016 Nature; Camerer 2018 Nature)
 - Computer Science (Moraila et al. 2014 PloS; Collberg et al. 2016)
 - Artificial Intelligence (Raff et al. 2019 NeurIPS; Gundersen et al. 2018 AAAI; Haibe-Kains et al. 2020 Nature; Ajayi et al. 2023 ICDAR)
 - Biomedical Science (Gentleman et a. 2005)

Manual Reproduction and Replication are Not Scalable

- Average time to reproduce the main results in one paper
 - Reproduce: Table Structure Recognition (an Al task): 8 hours (using code and data provided by the original authors; Ajayi et al. 2023 ICDAR)
 - Reproduce: General AI tasks: 53.5 days (using re-implemented codes and data provided by the original authors; Raff 2023 AAAI)
 - Replicate: Social and Behavioral Science: months up to 1 year (using the same methods and new data collected from new user studies)

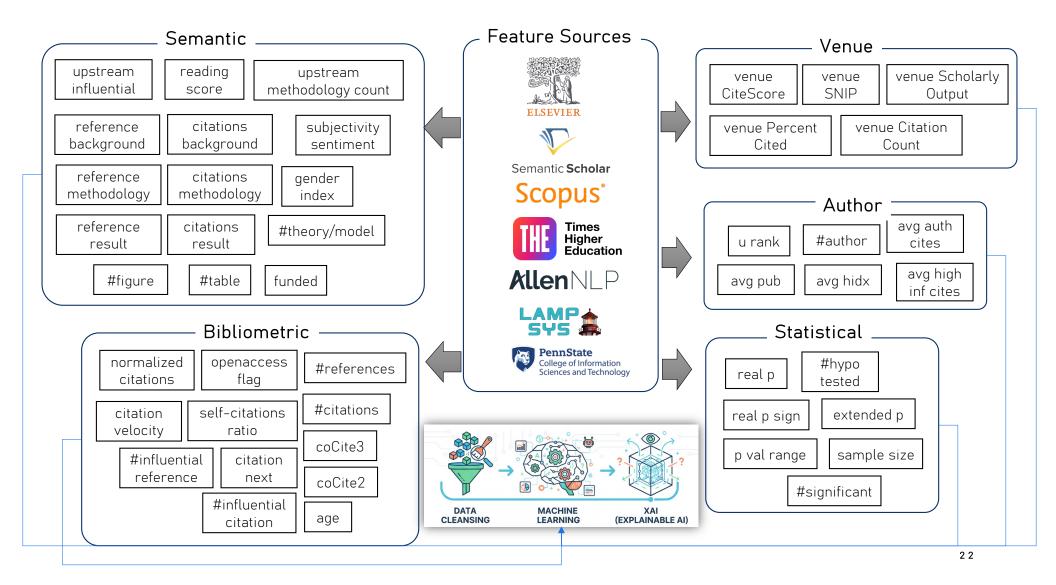
SCORE: A Synthetic Prediction Market for Estimating Confidence in Published Work (Rajtmajer et al. 2022 AAAI)



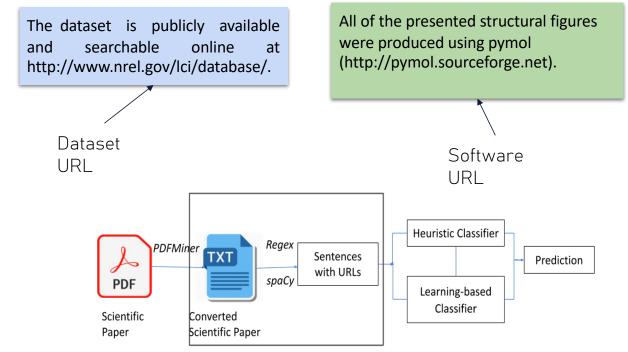
Synthetic prediction markets— Prediction markets populated by artificial agents (trader-bots), trained and updated within human-expert prediction markets, but deployable "offline".

- Trader-bots will represent atomic (human-interpretable) properties of relevant signals, including features extracted fromm the full text, metadata, and evaluation metrics after the paper is published.
- Bots will learn trading patterns from subject matter experts engaged in prediction markets, but unlike their human counterparts, will have comprehensive, unbiased view of the existing literature and metadata.

Feature extraction is the prerequisite!



Open-Access Datasets and Software (OADS) URL Extraction



The Architecture of the hybrid OADS URL classifier.

Salsabil et al. (2022 Sci-K) A Study of Computational Reproducibility using URLs Linking to Open Access Datasets and Software

SCI-K@ISWC'25

X: @FANCHYNA

BSKY: @FANCHYNA

Citation Context Sentiments vs. Reproducibility Scores

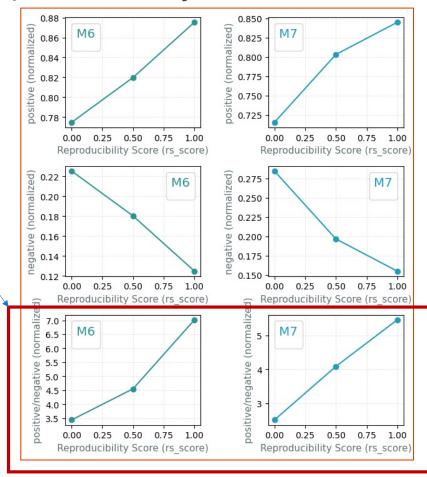
- Positive correlation between
 - ratio of #citation contexts (positive sentiments) over #citation context (negative sentiment)
 - reproducibility score

In this paper, we make a first attempt towards the second question, by studying a family of algorithms named DirectSet, in which the DirectPred algorithm proposed by **Tian et al. (2021)** is a special case with positive

Although we tried to train split network with the same training data we used, we failed to reproduce their results and used the model trained by the authors [32].

negative

Obadage et al. (2024 ACM REP) Can Citations Tell Us About a Paper's Reproducibility? A Case Study of Machine Learning Papers



SCI-K@ISWC'25

X: @FANCHYNA

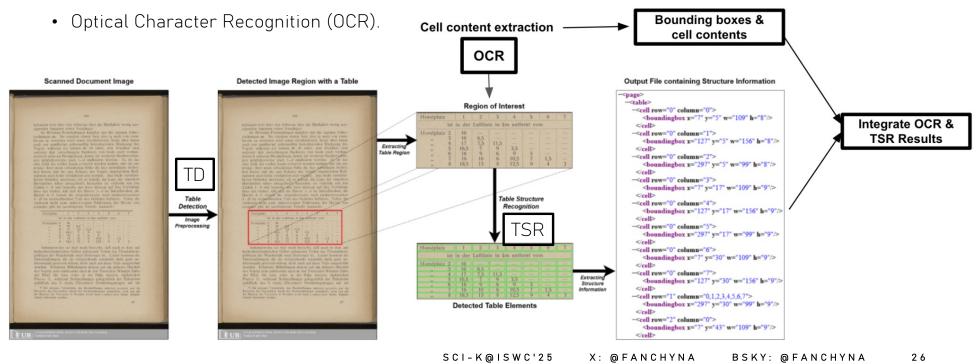
BSKY: @FANCHYNA

Our Ongoing Research

- Goal: building a new benchmark for LLM agents to replicate claims in Social and Behavioral Science papers
- Data: 200+ papers, pre-registrations, and human replication study reports from the SCORE project (Nosek et al. 2021 ARP)
- Replicability (new data), multi-difficulty level, multistage, no-human involved

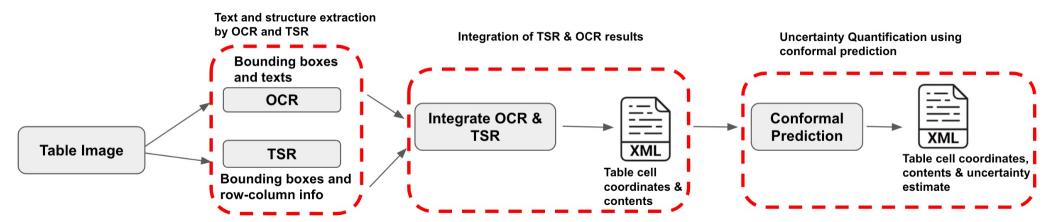
Project 2: Table Data Extraction

- Identifying and extracting structured data from tables embedded in PDFs and scanned images.
 - Table detection (TD)
 - Table structure recognition (TSR), and



Uncertainty-Aware Table Data Extraction

- Why doing this? Existing data extraction methods usually report an overall performance of precision, recall, and F1 and do not estimate the uncertainty of extracted data at the cell level.
- Method 2: Conformal Prediction



Ajayi et al. (2025 ICDAR) Uncertainty-Aware Complex Scientific Table Data Extraction

Uncertainty-Aware Table Data Extraction

DKC, autosomal recessive 6/DKCB6

#616553

DKC, autosomal recessive 7/DKCB7

Ajayi et al. (2025 ICDAR) Uncertainty-Aware Complex Scientific Table Data Extraction

28

Cells with high uncertainties are flagged as potentially incorrect. Human experts #193900 12013 13 White Sponge Nevus 2; WSN2 #615785 17q21.2 KRT13 *148065 AD White Sponge Nevus 2; WSN2 #615785 17a21.2 KRT13 *148065 Hereditary Benign Intraepithelial review only %127600 4q35 Hereditary Benign Intraepithelia Dyskeratosis; HBID 4q35 Pachyonychia congenita, PC flagged cells by Pachvonychia congenita 1/PC1 KRT16 Pachyonychia congenita 2/PC2 17021.2 KRT17 UQ instead of Pachyonychia congenita 3/PC3 12q13.13 KRT6A Pachyonychia congenita 4/PC4 Pachyonychia congenita, verifying all n.a. AR 260130 Dyskeratosis congenita, DKC DKC, autosomal dominant 1/DKCA1 extractions results 5p15.33 TERT DKC, autosomal dominant 2/DKCA2 TERT #613989 5p15 33 *187270 DKC, autosomal dominant 3/DKCA3 - Revesz syndrome 14q12 *604319 *604319 14q12 DKC, autosomal dominant 4/DKCA4 - autosomal recessive 5/DKCB5 RTEL1 16a22.1 DKC, autosomal recessive 1/DKCB1 NOP10 *606471 flagged cells by UQ DKC, autosomal recessive 1/DKCB1 DKC, autosomal recessive 2/DKCB2 DKC, autosomal recessive 3/DKCB3 DKC, autosomal recessive 6/DKCB6 DKC, autosomal recessive 6/DKCB6 #616353 *604212 DKC, autosomal recessive 7/DKCB7 UQ improves the data Before UQ After Human Correction OMIM White Sponge Nevus 1; V 12q13.13 extraction accuracy from White Sponge Nevus 1; WSN1 #193900 12q13.13 KRT4 *123940 KRT13 White Sponge Nevus 2; WSN2 White Sponge Nevus 2; WSN2 #615785 KRT13 *148065 17q21.2 Hereditary Benign Intraepithelial Dyskeratosis; HBID Hereditary Benign Intraepithelial Dyskcratosis; HBID %127600 4q35 n.a. 63% to 93% while Pachyonychia congenita, PC Pachyonychia congenita, PC Pachyonychia congenita 1/PC1 Pachyonychia congenita 2/PC2 reducing the human Pachyonychia congenita 3/PC3 #615726 KRT6A *148041 Pachyonychia congenita 3/PC3 KRT6A *148041 Pachyonychia congenita 4/PC4 #615728 12q13.13 KRT6B Pachyonychia congenita 4/PC4 #615728 12q13.13 KRT6B *148042 annotation effort by 53%. DKC, autosomal dominant 1/DKCA1 DKC, autosomal dominant 1/DKCA1 DKC, autosomal dominant 2/DKCA2 DKC, autosomal dominant 2/DKCA2 - autosomal recessive 4/DKCB4 5p15.33 TERT *187270 #613989 5p15.33 TERT *187270 #613989 Incorrect extractions DKC, autosomal dominant 3/DKCA3 - Revesz syndrome DKC, autosomal dominant 3/DKCA3 *608833 *608833 RTFI 1 DKC, autosomal dominant 6/DKCA6 ACD *609377 DKC, autosomal dominant 6/DKCA6 16q22.1 ACD DKC, autosomal recessive 3/DKCB3 17p13.1 WRAP53 Remaining incorrect cells

DKC, autosomal recessive 6/DKCB6

DKC. X-linked

*604212

*604212

Semantic Reasoning Era (2023 - present)

- Mining the reasoning knowledge and processes in scholarly publications using large language models (LLMs) and vision language models (VLMs)
 - Paper QA and SciTableQA
 - Scientific Claim Verification (Scientific Hypothesis Evidencing)
 - Hypothesis generation (ongoing)
 - Data Compilation (ongoing)
 - Hypothesis-evidence extraction (ongoing)

Semantic Reasoning has Gained Interests in Industry

- AllSci: hypothesis-centric, Al-powered
 - More than 12 million scientific hypotheses
 - Using AI-guided tools to help researchers formulate better hypotheses
- Scite: using citation context for QA and Table search
- Consensus: search engine + QA

https://guides.pnw.edu/AlSearch

Paper QA – Offloading Reading to Bots

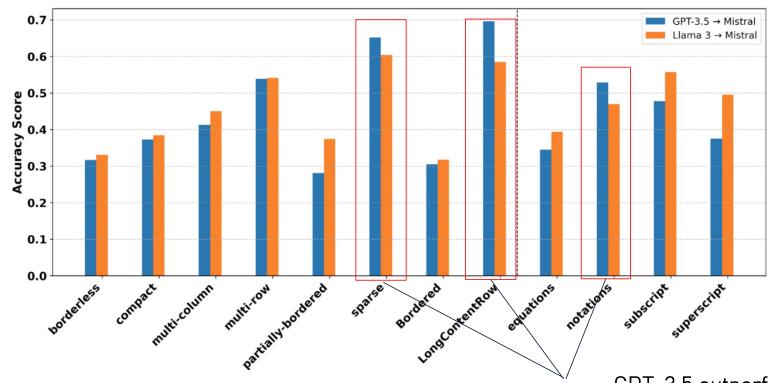
- Single document QA
 - Answer questions after reading a single scholarly document provided by a user
- Multi-document QA
 - Answer questions after reading multiple documents provided by a user

SciTableQA

- Question: What is the total reduction for Unary, NP Int, and Clause Att error types?
- LLM Answer: 337
- LLM Explanation: Add the reduction values for Unary (143), NP Int (129), and Clause Att (65) error types to get the total reduction.
- GT: 337
- Reasoning validity: score = 3
 (explanation aligns with ground truth & leads to correct answer)

error type	bottom-up	top-down	reduction
PP Attach	850	668	182 (21%)
1-word Span	687	489	198 (29%)
Unary	555	412	143 (25%)
NP Int	464	335	129 (28%)
Clause Att	376	311	65 (17%)
Different label	374	269	105 (28%)
Mod Attach	317	264	53 (17%)
Co-ordination	379	225	154 (41%)
UNSET add	291	216	75 (26%)
NP Attachment	216	161	55 (25%)
Other	413	304	109 (26%)

How Well Can LLM Do? Cross-LLM QA Evaluation

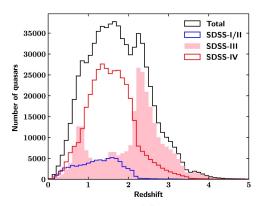


• Llama-3 outperforms GPT-3.5 for tables containing 9/12 complex features.

GPT-3.5 outperforms Llama-3 for tables with 3 other features.

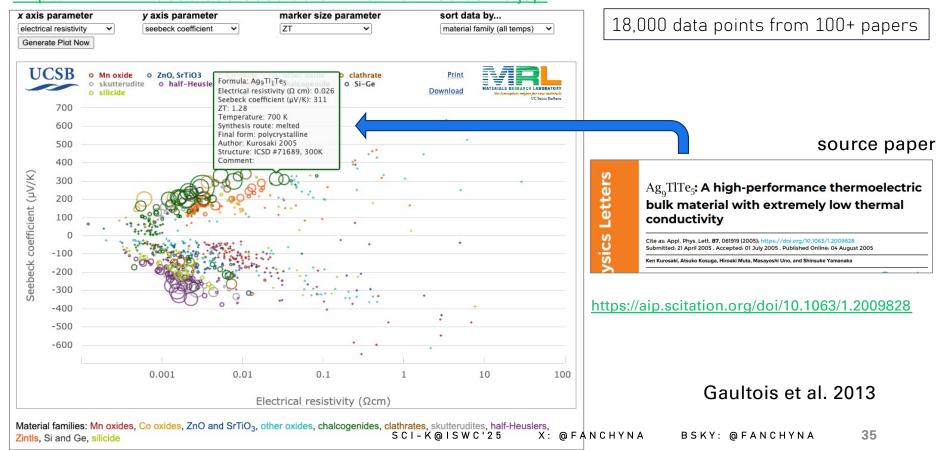
Data Compilation

- Automatic gathering data from multiple papers into a database
- Why important?
 - Tons of data are published in PDFs
 - Manually collecting data is very time-consuming
 - Need to compile data to get a sense of the answer to important questions in the literature (vs in just one paper at a time)
- Why is it hard? -- Usually needs reasoning and hard to generalize!



(Manually) Compiled Data in Materials Science

http://www.mrl.ucsb.edu:8080/datamine/thermoelectric.jsp



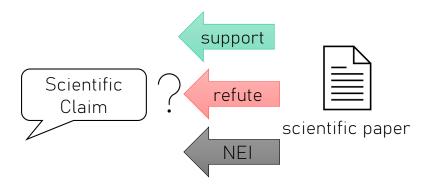
Our Work on Table Data Compilation

- 1. Data compilation usually involves two steps: extracting data from a table and populating the data into a a bigger table or a database
- 2. Neural models can achieve 60+% F1-scores on data Extraction (Ajayi et al. 2025 ICDAR), not including data population
- 3. VLMs can achieve anywhere between 50-90% F1-score on data Compilation using a pretty standard prompt (few-shot, no prompt tuning) (Domminage et al. ongoing project)

Challenge: Papers do not always follow a standard way to show data, and even measure data!

Scientific Claim Verification

• Problem definition: Given a claim and a scientific paper, can AI tell us if the paper supports or refutes claim (or does not provide enough information)?



Verifying Claims (hypotheses) in Scientific Papers

Can Large Language Models Discern Evidence for Scientific Hypotheses? Case Studies in the Social Sciences

Sai Koneru¹, Jian Wu², Sarah Rajtmajer¹ ¹ Pennsylvania State University, State College, PA ² Old Dominion University, Norfolk, VA

{sdk96, smr48}@psu.edu, j1wu@odu.edu

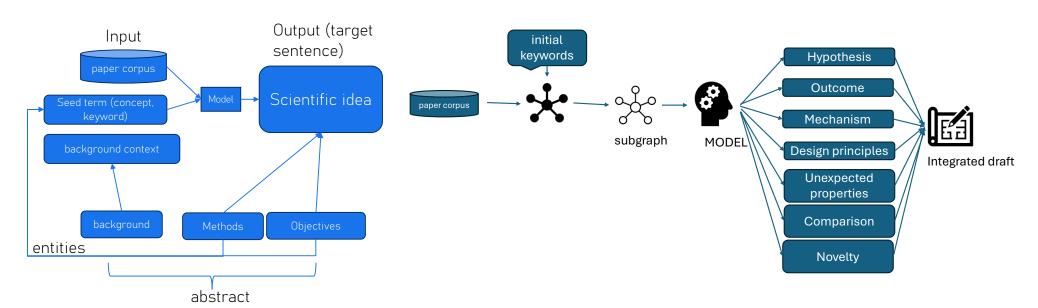
Al underperforms domain experts on verifying scientific hypotheses in social and behavioral sciences.

Best model of each type	Accuracy	Macro F1
embedding + supervised classification	70.31%	0.615
Transfer learning	67.97%	0.523
GPT3.5 few-shot	66.57%	0.576
PaLM2	62.87%	0.536

Data: 69 distinct hypotheses and 637 documents.

Hypothesis Generation

• Can AI help scientists propose novel and feasible scientific hypotheses and then plan experiments to verify them?



SciMon (Wang et al. ACL 2024)

Ghafarollahi et al., (2025 Advanced Materials)

Hypothesis Generation

- Evaluation is a major challenge!
 - Models have different input and output.
 - A lack of expert evaluation standard.

Stay for our talk about this topic!

From Philosophy to NLU: Evolving Definitions of Research Hypotheses

Jian Wu1,*, Sarah Rajtmajer2,*

¹Old Dominion University

²The Pennsylvania State University

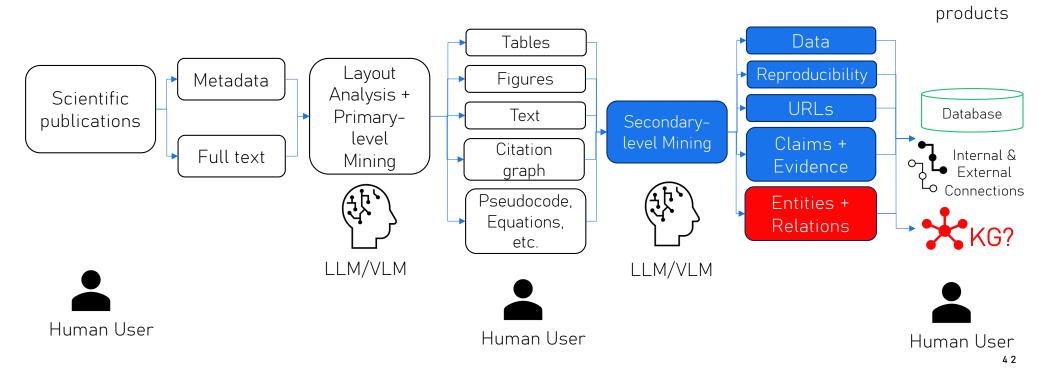
Ongoing Work

- We propose generating highly novel and interdisciplinary citation-enriched hypothesis proposals through iterative interactions between expert LLMs.
- We explore new methods to automatically evaluate the novelty of the generated hypotheses.

How Could Mining Scholarly Data Impact Scientific Information Access?

A Trade-off between efficiency and authenticity.

AI → Efficiency but loss authenticity



Final data

Do We still Need to Read Papers or Do We Rely on Al to Read Papers?

- Both should!
- We are still not sure how to train AI to read scientific papers and automatically mine the information the users need
- Humans should always read original papers to acquire the most genuine scientific knowledge

Summary

- Al plays an important role to read and digest the ever-growing scholarly big data to improve the efficiency of information access
- LLMs and VLMs allow us to mine nuanced knowledge from low-level content in scholarly papers but still far from being used as a humanexpert level assistant
- Future research may consider two possible directions
 - Scale-out: extensively train smaller AI agents to become experts of a narrow field and then form a team to work collectively
 - Scale-up: train a huge AI to become an erudite

Physical Review Letters

Many "successful" Als are obtained by extensively training a weak Al (like a young kid) on a particular task in a narrow domain.