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Abstract

Over the past decades, alongside advancements in natural language processing, significant attention has been
paid to training models to automatically extract, understand, test, and generate hypotheses in open and scientific
domains. However, interpretations of the term hypothesis for various natural language understanding (NLU)
tasks have migrated from traditional definitions in the natural, social, and formal sciences. Even within NLU,
we observe differences defining hypotheses across literature. In this paper, we overview and delineate various
definitions of hypothesis. Especially, we discern the nuances of definitions across recently published NLU tasks.
We highlight the importance of well-structured and well-defined hypotheses, particularly as we move toward a
machine-interpretable scholarly record.
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1. Introduction

The word “hypothesis” has been used variably with different meanings, over decades and centuries,
across the social, natural, and formal sciences—from its conceptual roots in ancient Greek philosophy
[1, 2, 3] to the development of hypothesis testing as statistical methods [4, 5] and subsequent evolution
of the term in different fields reflecting their unique questions and approaches [6]. Of course, ambiguity
around language and variable use of terminology is pervasive within and outside of science. Language
has always been an impoverished tool for representation and expression of complex ideas [7, 8, 9].
In many cases though, this is not a problem. Members of a particular community develop shared
understanding of the meaning of a given term in context, and this allows them to communicate
effectively toward collective goals.

We argue that ambiguity and variability around the definition of hypotheses, which was once
acceptable—even perhaps productive—is now a critical concern in light of natural language processing
(NLP) and natural language understanding (NLU) tasks requiring quantitative operationalization of
hypotheses, in particular, hypothesis extraction (detection/identification), verification, and generation.
Emerging technical work in these fields often do not include explicit definitions of hypotheses, claims,
or evidence, instead relying de facto on benchmark datasets to provide implicit definitions.

Following, we survey the definitions and operationalizations of hypotheses, focusing on research
hypotheses engaged in the hypothesis mining literature. Research hypotheses are hypotheses designed
for systematic investigation within a research framework. In this paper, we do not distinguish between
research hypothesis and scientific hypothesis. In principle, these two terms have different scopes, but in
practice, they are often used interchangeably in modern hypothesis mining papers. The related tasks are
particularly in the areas of natural language inference (NLI), hypothesis extraction, scientific hypothesis
evidencing and scientific claim verification, and scientific hypothesis generation. We highlight important
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differences and discuss the challenges these differences impose on knowledge assembly and aggregation.
Our work is motivated by the vision of a computable scholarly record—a verifiable and extensible
knowledge base synthesizing computationally and data-enabled discoveries [10]. This vision, we
suggest, will be enabled by machine-readable hypotheses well-structured in predictable formats.

2. Background

2.1. Conceptual origins

The word hypothesis derives from Greek and means, literally, a putting under or supposition. Ancient
Greek philosophers used the term to describe a foundational assumption upon which to build out
further reasoning. Plato uses the term in several of his dialogues with this intention-namely, as a claim
accepted temporarily in order to explore its implications. Of particular interest to Plato was whether a
hypothesis could support consistent and coherent conclusions [11, 12]. Aristotle also engaged with the
term. Aristotle viewed hypotheses more cautiously, being skeptical of relying on hypotheses without
empirical verification. He delineated tentative assumptions from axioms or first principles, insisting
that scientific knowledge must be based on demonstrated causes, not just assumed premises [13].

During the scientific revolution of the 16th and 17th centuries, the concept of hypothesis evolved
significantly. Galileo and Newton began using hypotheses as formal components of the scientific method,
emphasizing the importance of testing through observation and experiment [14, 15]. René Descartes
also contributed to this shift, promoting skepticism and the formulation of testable propositions [16, 17].

By the 19th and 20th centuries, the hypothesis had become a central pillar in science. Prominent
philosophers of science Karl Popper and Thomas Kuhn centered hypotheses within the scientific process,
both agreeing that hypotheses must engage with empirical data in some way, i.e., should be testable,
observable [18, 19]. However, Kuhn and Popper’s views on scientific advancement differed in important
ways and their respective views on the role of hypotheses reflected these differences. Kuhn, a historian,
viewed periods of science through the lens of paradigms and hypotheses as statements that operates
within a paradigm (vs. free-floating assumptions to be directly tested in isolation) [20]. Popper, on
the other hand, highlighted the asymmetry between verification and falsification—hypotheses cannot
be proven true, only proven false. Central to Popper’s thinking is his assertion that confirmations
for a theory are easy to find if we look for them. Confirming evidence should only count when it is
the result of a genuine test of the theory (i.e., we conclude that the theory withstood an attempt to
disconfirm it) [3]. In essence, Popper argued that Kuhn’s hypotheses risked self-fulfillment. Popperian
theories underlie the current open science movement triggered by the replication crisis, including efforts
promoting development of strong, testable hypotheses, and preregistration to delineate exploratory vs.
confirmatory findings [21, 22].

2.2. Modern forms

In the last decades, there has been a growing interest in hypothesis mining in scientific literature, mostly
in the fields of NLP and NLU, but also in interdisciplinary fields between social science and Al The
exact definitions of hypotheses involved are not always provided in the context of research problems,
and the specific forms and expressions vary across papers. Here, we categorize modern hypotheses
into several types, which may deviate from traditional definitions, e.g., [23].

Ideas as hypotheses. As defined in Kuhn & Hawkins [1], an idea is a realization or hypothesis
that can challenge and shift paradigms within a scientific community. Several recent papers about
hypothesis generation adopted this conceptualization and treated ideas as hypotheses [24, 25]. In
Kumar et al. [24], the authors build a dataset containing Future Research Ideas (FRIs) and then consider
the generated FRIs to be hypotheses. The structure of these ideas includes: premises; a traditional
research hypothesis; and its context. In Wang et al. [25], the authors do not discern the term ideas from
hypotheses and use them interchangeably in certain contexts, but the ground truth data shows that the



Question: Why do astronauts need oxygen in the backpacks of their spacesuits? Answer: to help astronauts breathe in outer space

| an animal requires oxygen to breathe an astronaut requires oxygen H: an astronaut
an astronaut is a kind of human isaki ; to breath MEEIES #i1S
| an astronaut is a kind of animal oxygenina
| ahuman is a kind of animal spacesuit backpacks contain spacesuit
| avacuum does not contain oxygen oxygen backpack to
| space is a vacuum there is no oxygen in space breath

Figure 1: An example in the EntailmentBank dataset, demonstrating the entailment tree structure to support
the hypothesis (in a shaded box) generated based on the question and answer. The figure is adopted from [35].

generated content contains preliminary and broad notations intended to inspire further investigation,
which is aligned with the concept of ideas. An example is shown in Table 1.

Claims as hypotheses. The classical definition of claim is the conclusion or assertion that you want
your audience to accept [26]. Adopting this definition, in scientific literature, a claim can be defined as a
specific assertion reported as a finding of the paper. A paper can make more than one claim, and a claim
may contain one or multiple sentences. One definition of hypothesis is a claim that has not been tested
[27]. In Alipourfard et al. [28], authors label a claim trace for each paper in their corpora, and each
trace contains four claims. Hypotheses and evidence are treated as two types of claims. In the recent
SciHyp dataset [29] developed for hypothesis detection and classification in Computer Science papers,
many hypotheses in the ground truth are claims manually extracted throughout the full text. This
ambiguity also occurs in scientific hypothesis evidencing (SHE; [30]) and scientific claim verification
(SCV; [31]) tasks. Both tasks aim to discern the relationship (or stance) between a hypothesis (in SHE,
or a claim in SCV) and a candidate piece of evidence.

Hypothesis-proposals. In recent works about hypothesis generation, models are built to gener-
ate not only a hypothesis but also a series of related sections such as its background, justification,
and test procedures, resulting in a proposal-style document [32]. The hypothesis-proposal increases
the transparency of hypothesis generation and provides a guide for testing. However, the specific
format/sections of the proposal differ by model. An example in [32] is shown in Table 1.

Formal expressions. In early work, a research hypothesis is broken down into three dimensions,
namely contexts, variables, and relationships [16]. Each hypothesis is associated with a target variable
and a set of independent variables, and relationships refer to the interactions between a given set of
variables under a given context that produces the hypothesis. A hypothesis is then naturally expressed
with a semantic tree in which the nodes represent variables and the edges represent relationships.

In more recent works in NLU, papers have expressed research hypotheses in various ways, depending
on the focal tasks. For example, in hypothesis generation tasks, the generated hypothesis may be
composed of multiple declarative statements, in which one serves as the main hypothesis and the others
provide additional context or details (see[33] and [25] in Table 1). In the hypothesis evidencing task,
hypotheses can be written as questions [30], which can be converted into hypotheses in declarative
form. A research hypothesis can also be decomposed as a question and an answer, e.g., the SciTail
dataset [34]. Their entailment relation can be further explained using an entailment tree showing how
the hypothesis follows from the text corpus [35] (Figure 1).

3. Scientific hypothesis-related tasks and datasets

3.1. Natural language inference

Natural language inference (NLI, i.e., recognizing textual entailment (RTE)) involves assessing whether
a given textual premise entails or implies a given hypothesis [36, 37]. Most NLI datasets, such as SNLI
[38] and RTE-6 [39], are in open domains [38]. SciTail is one of the few datasets built for scientific NLI
[34]. Hypotheses are expressed in single declarative sentences (see Table 1).

Another scientific NLI dataset is EntailmentBank, built for multi-step scientific inference (Figure 1).
The task is to generate an entailment tree given a hypothesis. The tree shows a hierarchical supportive



studies indicating an association H1: There is an association between social media use and
bad mental health out- comes.

(study1 | study2 | study3 ]

Question: Is there an association

. . . . [ H2: There is littl iati t ial i
between social media use and bad studies indicating little or no association ere is little or no association between social media
use and bad mental health out- comes.
mental health outcomes? Study4 | Study5
" - - N H3: There is little or no association between social media
studies showing mixed evidence use and bad mental health out- comes.

([ studys ] study7 [ studys ]

Figure 2: The collaborative review document structure for an example question and the hypotheses derived
from the (question, answer) pairs. [30].

structure of claims toward a hypothesis. Other scientific NLI datasets include MediNLI [40] and BioNLI
[41] in the medical and biomedical domains, and e-SNLI-VE [38] for visual scientific inference.

3.2. Hypothesis and claim extraction

Here, the goal is to automatically identify hypotheses from a scientific document. Because hypotheses
can be viewed as claims prior to testing, the input, output, and methods for extracting hypotheses and
claims are similar. The input document can be an abstract, e.g., [42, 43] or a full paper [28]. In White et
al. [44], authors propose and apply a schema for annotating sentences in full text of scientific articles
into 9 types: hypothesis; goal; motivation; background; method; experiment; result; observation; and
conclusion [44]. In the dataset used for training DeepCause, a model for hypothesis extraction, selected
claims identified from the full text are labeled as hypotheses [23].

Claim extraction may benefit from structured abstracts which contain, e.g., a dedicated Findings
section (see Lancet [45]). Yet still, the specific sections differ across journals. For example, in [42],
findings or proposed items are labeled as claims and one abstract may contain multiple claims (Table 1).

It is worth noting that papers in computer science and several other domains often claim find-
ings or contributions without explicitly stating hypotheses, e.g., [25]. We consider these findings or
contributions pseudo-hypotheses.

3.3. Scientific hypothesis evidencing and scientific claim verification

Scientific hypothesis evidencing (SHE) [30] is the task of automatically identifying evidence from
scientific publications in support of or refutation of a given hypothesis. This task is similar to another
task called Scientific claim verification (SCV), both reflecting a model’s reasoning capability. The main
difference is that in SHE, the hypotheses are usually high-level research questions (Figure 2). In SCV
datasets, the hypotheses are usually lower-level claims in specific contexts. However, certain cases
are in between. Both tasks can be divided into two subtasks: identifying evidence candidates from a
corpus of documents; and discerning the relationship between the hypothesis (claim) and an evidence
candidate. Most research focuses on the second subtask, in which the relationships are classified into
exclusive categories, namely SUPPORT, REFUTE, and NEI (not enough information) or their variants.

In Koneru et al. [30] authors build a dataset for the task of SHE using community-driven annotations
of studies in social sciences. The input is a hypothesis and an abstract (i.e., candidate evidence), and the
output is a label indicating whether the abstract entails, contradicts, or is inconclusive to the hypothesis.
In Wadden et al. [31], authors build an SCV dataset, the input of which is a (claim, abstract) pair (see an
example in Table 1). In the Covid-Fact dataset [46], claims are obtained by filtering titles of social media
posts. While, in the HealthVer dataset, claims are manually extracted from questions and snippets
returned by search engines [47].

DiscoveryBench [48] is a benchmark designed for a task called data-driven discovery. Similar to SCV,
the goal is to verify a hypothesis, originally expressed in the form of a research question. Nevertheless,
instead of using abstracts as evidence, the verification is grounded in data. In an example task, a model is
given a dataset in the form of a spreadsheet and a research question. The model is expected to generate
a stepwise workflow that tries to answer the question using the given data. The final output, treated
as a hypothesis, is decomposed into a semantic tree containing (context, variable, relationship) and



Table 1

Examples of input and output for selected hypothesis-related tasks. Task names are abbreviated. Gen=Hypothesis
generation; Ext=Hypothesis (Claim) extraction; SCV=Scientific claim verification; DDD=Data-driven discovery.

Tasks

‘ Input

Output

Examples

NLI

(Premise,
Hypothesis)
(SciTail [34])

Label:

Entail,
Neural,
Contradiction

Input premise: Beats are the periodic and repeating fluctuations heard in
the intensity of a sound when two sound waves of very similar frequencies
interfere with one another.

Input Hypothesis: When waves of two different frequencies interfere, beating
oceurs.

Output label: entail

Ext

Full text or
an abstract
[42]

Hypotheses or
claims

Input: The abstract of a paper titled A Morphological Hessian Based Ap-
proach for Retinal Blood Vessels Segmentation and Denoising Using Region
Based Otsu Thresholding [49]

Output claim: We proposed a less computational unsupervised automated
technique with promising results for detection of retinal vasculature by using
morphological hessian based approach and region based Otsu thresholding.

SCV

(claim,
abstract)
(SciFact [31])

Label:
Support,
Refute,
NEI

Input claim: The coronavirus cannot thrive in warmer climates.

Input abstract: ...most outbreaks display a pattern of clustering in relatively
cool and dry areas...This is because the environment can mediate human-
to-human transmission of SARS-CoV-2, and unsuitable climates can cause
the virus to destabilize quickly...

Output label: Support

DDD

Goal and
data
(DiscoveryBench

[48])

Workflow
answer

and
decomposed
hypothesis

Input goal: How did urban land use affect the invasion of different types
of introduced plants in Catalonia?

Input data: a relational table of habitat type vs. plant type

Output workflow: A workflow to answer the question.

Output answer (hypothesis): Urban land use increased invasion by agriforest
plants over gardening introduced ones in Catalonia.

Output (context, variable, relationship)=(urban habitat type, gardening, unin-
tentional, reduced)

Gen

Keywords
(SciAgents [33])

Proposal

Input keywords: heat transfer performance, soft lithography, etc.

Output hypothesis: We hypothesize that integrating biomimetic materials with
microfluidic chips will significantly enhance their heat transfer performance
and biocompatibility, making them ideal for advanced biomedical applications.
Specifically, we propose that the lamellar structure of biomaterials, inspired by
keratin scales, can be engineered into microfluidic chips using soft lithography
techniques to improve their mechanical behavior and heat transfer efficiency
under cyclic loading conditions.

Output other sections: outcome, mechanisms, design principles, unexpected
properties, comparison, and novelty, and their expanded versions.

Gen

Data [50]

Hypothesis

Input: Tweet pairs in the TWEET POPULARITY dataset [51].
Output: Tweets with named entities like people, places, or organizations tend
to get more retweets by being more specific.

Gen

Background
(SciMon [25])

Ideas

Input seed term: diverse relational edge embedding

Input background: the task of converting a natural lanuage question into
an executable sql query , known as text - to -sql, is an important branch of
semantic parsing . the state - of - the -art graph -based encoder has been
successfully used in this task but does not model the question syntax well.
Output: We propose a novel graph-based encoder that uses a diverse relational
edge embeddings to model the question syntax.

compared against the gold standard hypothesis (see an example in Table 1). SciClaimHunt is a dataset
recently built for SCV, in which a small amount of claims are manually extracted from the discussion
and conclusion sections of research papers in computer science. Most claims are generated by LLMs. Of
note, a fraction of claims are not self-contained and require reference to the context of the source paper.



3.4. Scientific hypothesis generation

The goal of scientific hypothesis generation is to automatically create new, testable scientific hypotheses
or research ideas that identify novel relationships, phenomena, or gaps in existing knowledge [24].
Recent advancements in LLMs, e.g., Llama [52] and GPT [53], offer promise. Here too, existing literature
is inconsistent with respect to task formulation, i.e., input and output (see examples in Table 1).

We identify four types of input for the hypothesis generation tasks:
(1) keywords, concise descriptions of the topics or central concepts of the model, such as in SciMon [25]
and SciAgents [33];
(2) goals, brief discourse outlining research goals. In Al co-scientist [32], goals can be a request to
propose a novel hypothesis, suggest special requirements, or ask a question. In Si et al. [54], LLMs are
provided “topics”, such as “novel prompting methods that can better quantify uncertainty or calibrate
the confidence of large language models”, which serve as goals. In Pu et al. [55], an input is described
as an “objective”, which is equivalent to a goal;
(3) data, i.e., a dataset, based on which the model is requested to generate a hypothesis, e.g., [50];
(4) background, context, rationale, or theoretical foundation of a hypothesis. For example, in the SciMon
framework [25], the input includes seed terms, including concepts and keywords, and background
context, which contains problems, motivations, or focus points. The Mamba framework [56] uses the
same ground truth as SciMon [25]. The MOOSE framework [57] uses background and inspiration
derived from the raw web corpus as the input.

Likewise, we identify three types of output of hypothesis generation tasks:
(1) traditional hypothesis, usually expressed as a single or multiple declarative sentences, e.g., [50, 58].
(2) ideas, enriched hypotheses as shown in Section 2.2. For example, in ScIMoN, generated ideas may
contain claims, methods, and objectives extracted from abstracts.
(3) hypothesis proposals, comprehensive structured hypothesis description documents. For example, the
output of SciAgents [33] is a document containing hypotheses, outcomes, mechanisms, design principles,
unexpected properties, comparison, and novelty, each having its expanded version. Al co-scientist [32]
also outputs a structured document but with different sections: introduction, recent findings, related
research, rationale, specificity, experimental design, and validation. Si et al. [54] request LLM agents
to generate an “idea”, containing several components (e.g., problem, existing methods, motivation,
proposed method, experiment plan), similar to a research proposal. Whereas, the Piflow framework [55]
requires LLM agents to generate a “hypothesis structure” consisting of rationale, hypothesis, reiterate,
and an experimental candidate.

4. Discussion and Conclusions

Our work here intends to be more descriptive than prescriptive. We outline the various definitions
and instances of hypotheses in existing scientific literature (and beyond). In particular, we focus on
definitions of hypotheses and related concepts in recent work in NLU.

We hope that this work may raise awareness within the hypothesis mining community about standard-
ization of corpus-level tools, e.g., knowledge graphs representing connections amongst interdisciplinary
hypotheses, or hypothesis generation models across multiple domains. In lieu of standardization, the
inclusion of explicit, clear definitions of hypotheses (formal, where possible) could improve alignment
and assembly:.

For more than two decades, many in the research community have advocated for open data, open
materials, preregistration, and other best practices as central to the vision of a searchable and interpretable
scholarly record. With recent technological advances, this vision is on the horizon. The ultimate
goals of an interpretable scholarly record are: robust and efficient scientific progress; thoughtful
allocation of community resources toward important open problems; and honest dialogue with public
and policymakers. How—precisely—a queryable scholarly corpus comes together is an open question.
Here, we suggest that dissemination of clear, consistent, well-specified machine-readable hypotheses,
claims, and evidence are critical to this mission.
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