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Abstract

The growing availability of machine learning (ML) models, datasets, and related artifacts across platforms,
such as Hugging Face, GitHub, and Zenodo, has amplified the need for structured and standardized metadata.
However, metadata practices remain highly heterogeneous, differing in schema design, vocabulary usage, and
semantic expressiveness, posing significant challenges for tasks such as representation, extraction, alignment, and
integration. This fragmentation impedes the development of infrastructures that depend on machine-actionable
metadata to support discovery, provenance tracking, or cross-platform interoperability. While metadata is also
foundational to enabling FAIR (Findable, Accessible, Interoperable, and Reusable) principles in ML, there is a lack
of consolidated understanding of how existing standards support interoperability and alignment across platforms.
In this survey, we review and compare a range of general-purpose and ML-specific metadata standards, evaluating
their suitability for cross-platform alignment, discoverability, extensibility, and interoperability. We assess these
standards based on defined criteria and analyze their potential to support unified, FAIR-compliant metadata
infrastructures for ML, laying the groundwork for scalable and interoperable tooling in future ML ecosystems.
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1. Introduction and Motivation

The rapid growth of machine learning (ML) research has led to an explosion in the availability of ML
artifacts, such as models, datasets, and training code, which are now shared across a wide range of
platforms, including GitHub!, Hugging Face?, Zenodo®, or OpenML*. These platforms have become
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an essential infrastructure for disseminating pre-trained models, experimental results, datasets, and
reproducible workflows. However, the scale and diversity of these artifacts have outpaced any consistent
metadata practices, resulting in fragmented, incompatible, and semantically shallow descriptions across
platforms [1, 2, 3].

Metadata provides structured descriptions of digital objects such as datasets, software, and models,
supporting both human understanding and machine interoperability. It also carries critical supplemen-
tary information, including provenance, quality, licensing, versioning, and usage constraints that bring
additional context to a resource. However, significant heterogeneity exists in how metadata is designed
and applied across platforms. This includes differences in schema design, vocabulary usage, expres-
siveness, and machine readability. This lack of metadata standardization limits machine-actionability
and affects automated workflows, making it difficult, for instance, to discover models, link them to
related publications, or incorporate them into knowledge-driven systems [4]. Figure 1 illustrates this
progression from fragmentation toward semantic integration and FAIR (Findable, Accessible, Inter-
operable, and Reusable)® infrastructures. These difficulties become more evident in workflows that
rely on structured knowledge representations, such as Data Science (DS) and Artificial Intelligence (AI)
pipelines or Knowledge Graph (KG)-powered discovery tools.
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Figure 1: Metadata integration pipeline for ML. The figure illustrates the progression from fragmented metadata
across ML platforms, through standardization and semantic alignment, toward FAIR and interoperable metadata
infrastructures.

In ML contexts, metadata encompasses descriptive, administrative, structural, provenance, evaluation,
and ethical dimensions, each crucial for the reuse and interpretability of ML artifacts. Without such
contextual detail, those artifacts cannot be reliably discovered, interpreted, or reused. In this sense,
metadata is a cornerstone of FAIR infrastructures: in line with the FAIR principles, metadata alongside
data and infrastructure plays an important role, and its relevance extends beyond ML artifacts them-
selves [5]. In scientific research, particularly in the fields of DS & AI, metadata serves as the connecting
layer that describes and contextualizes digital artifacts. In order to address these foundational needs,
efforts to improve metadata quality and standardization in ML have emerged, often linked with FAIR
research, responsible Al, and data-centric workflows. In this paper, we use the term "standards" in
a broad sense, encompassing formal specifications, vocabularies and conceptual models, as well as
community practices. Notable initiatives include model cards®, dataset documentation frameworks,
benchmark metadata formats such as the MLCommons Model Index’, and the adoption of general-
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purpose metadata standards, such as Schema.org®, DCAT?, or DataCite'’. Despite these advances, these
initiatives remain largely siloed, often designed for specific platforms. These efforts, while valuable,
tend to address specific phases or artifact types and often neglect or have a limited focus on alignment
and integration challenges across the full ML life cycle. As a result, these platform-specific metadata
silos limit their interoperability in multi-repository or multi-domain applications, which is an essential
requirement for scalable scientific infrastructures.

Adding to the issue, the wide range of metadata standards and schema — both general-purpose and
domain-specific, as well as the conceptual models, vocabulary terms, and representation formats they
adopt, create significant barriers to semantic interoperability, complicating integration efforts across
repositories. This leads to (terminology) incompatibility and fragmentation between different platforms.
Without systematic alignment and mappings between these heterogeneous metadata standards, it
becomes difficult to construct unified metadata layers that can support scenarios like reasoning, querying,
or KG construction across platforms. Despite isolated efforts to bridge metadata silos, the field still
lacks a shared framework or a consolidated understanding of how existing standards compare in terms
of alignment potential, extensibility, and machine-actionability.

Multiple lines of research have focused on formalizing ML metadata. Li et al. [4], for example,
proposed a unified representation to query model repositories. Other works survey scientific metadata
standards [6], data provenance in computational workflows [7], while Samuel, Loffler & Konig-Ries
[8] and Limani et al. [9] focus on FAIRification of ML pipelines and that of ML models, respectively.
However, there is a need to address the ML artifacts from a metadata perspective, such as the suitability
of metadata frameworks for cross-platform alignment, semantic interoperability, and integration based
on KGs, linked to practical challenges such as dataset search [10] and metadata inconsistencies [11].

The main contributions of this paper are summarized as follows:

+ A review and comparative analysis of metadata practices in major ML platforms.

+ A review of the existing ecosystem of metadata standards for ML artifacts and their suitability
for semantic integration.

« Identification and a detailed discussion of the challenges inherent in mapping, aligning, and
integrating heterogeneous ML metadata.

+ Identification of key gaps, limitations, and research opportunities in the field of ML metadata
management and semantic integration.

2. Metadata Practices in Prominent ML Platforms

This section reviews metadata practices in major ML platforms, focusing on their structure, granularity,
and machine-actionability.

2.1. Criteria for Selecting Platforms (CSP)

To ensure a representative and practical comparison, the following six criteria were used to select ML
platforms.

« CSP1: Popularity, Adoption, and Influence. The platform is widely used in the ML community,
as demonstrated by active contributors, hosted artifacts, GitHub metrics, or citations in academic
literature, or integration into major workflows in academia or industry.
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+ CSP2: Metadata Accessibility and Machine-Actionability. The platform exposes metadata in
structured or semi-structured formats (e.g., JSON, YAML, XML, or RDF), and provides programmatic
access via APIs for retrieving or exporting metadata. Preference is given to platforms whose metadata
supports parsing, automated extraction, and reuse without manual intervention.

« CSP3: ML Artifact Coverage. The platform supports multiple ML-specific artifact types, including
models, datasets, training code, and optionally notebooks or experiment traces, as well-described and
retrievable entities.

« CSP4: Open Access and Licensing Transparency. Metadata and artifacts are publicly accessible
without restrictive authentication or institutional barriers. Clear licensing supports metadata reuse,
redistribution, and integration into downstream applications.

« CSP5: Interoperability Potential. The platform is relevant to metadata alignment efforts and
provides metadata that can be mapped to standard schemas with minimal transformation effort.

« CSP6: Participation in Standards and Community-Driven Practices. The platform is involved
in or adopts emerging metadata standards, such as the MLCommons’ Model Index, or Hugging Face’s
model-index.yaml, or contributes to open science infrastructure through community initiatives.

2.2. Relevant Machine Learning Platforms

Hugging Face Model & Dataset Hubs is widely adopted for sharing pretrained models and datasets,
particularly in natural language processing (NLP) and computer vision (CSP1, CSP3). Metadata is primar-
ily provided through semi-structured README . md files, often containing structured YAML headers and
markdown descriptions, alongside auxiliary files such as config. json and dataset_infos. json
(CSP2). Additional effort has been undertaken to describe datasets using the Croissant ML extension to
Schema.org [12] (CSP2). These elements support common fields like license, task, and language, and
often include links to publications such as arXiv papers (CSP5). However, schema adherence varies
across entries, and content inconsistencies hinder machine-actionability (CSP2). While the Hugging
Face Hub API supports metadata access, it does not enforce schema constraints (CSP6). Nevertheless,
community-driven practices such as the use of model-index.yaml and cross-publishing on plat-
forms like Zenodo reflect emerging support for structured metadata (CSP4, CSP6). FAIR-oriented tools
like MLentory [13] demonstrate ongoing efforts to extract structured metadata for integration into
knowledge infrastructures (CSP5).

Zenodo is a general-purpose repository used to archive research artifacts, including datasets and
ML models (CSP1, CSP3). It adopts the well-established DataCite schema and assigns persistent DOIs,
ensuring long-term preservation and citation capabilities (CSP2,CSP6). Metadata is accessible in XML
and JSON formats, with public APIs and license declarations (CSP4). Although metadata for general
scientific artifacts is rich, Zenodo lacks expressiveness for ML-specific features, like model architecture
or training metrics (CSP5). Thus, integration with ML-specific standards requires supplementary
metadata or schema extensions. Despite this, its stability, openness, and alignment with FAIR principles
make it a valuable component in cross-platform metadata workflows involving Hugging Face and other
platforms (CSP5).

GitHub is a ubiquitous platform for hosting ML-related content, such as serialized models, datasets,
and training code, often serving as the origin point for Hugging Face model repositories and Zenodo
archives (CSP1, CSP3). Metadata on GitHub is primarily unstructured, embeded within README.md,
LICENSE, or commit messages, without adherence to any formal schema (CSP2). While GitHub provides
version control and open access features supportive of reproducibility (CSP4), extracting structured
metadata often requires NLP-based or code-based analysis pipelines, limiting machine-actionability
and integration.



Kaggle!! is a platform for hosting ML datasets and notebooks, widely used for competitions, and
educational purposes (CSP1, CSP3). Metadata for datasets include column descriptions, file formats,
and data types. For notebooks, execution environment, associated datasets, and runtime information
are captured in a structured form (CSP2). It provides a public API for accessing metadata, which is
generally well-structured and machine-actionable within its ecosystem (CSP2, CSP5). Despite its strong
internal schema, metadata remain tightly platform-specific and lack standardized vocabulary reuse,
limiting external interoperability (CSP5). Nevertheless, there is an ongoing effort to align metadata for
datasets to Croissant ML (CSP2).

MLCommons is a collaborative initiative focused on improving reproducibility, benchmarking, and
metadata standardization in ML research and engineering (CSP1, CSP6). It provides a YAML-based
schema (model_index.yaml) describing model domains, evaluation metrics, and usage context in a
structured, machine-readable form (CSP2). Though the scope is currently limited to benchmarking,
the quality of structured metadata and community involvement make MLCommons a key actor in ML
metadata standardization (CSP5, CSP6). Artifacts are publicly available through repositories or GitHub
(CSP4). ML Commons is also the main driver behind Croissant ML (CSP2).

Hugging Face Trending Papers succeeds the now-retired Papers with Code '?, continuing the
mission of bridging academic publications and code repositories. It is a discovery interface that
highlights recent and popular ML research papers, ranked based on community engagement and
GitHub star activity (CSP1, CSP3). While the interface supports paper-code linkage and improves
research visibility, the metadata is minimally structured and lacks alignment with formal schemas or
standardized vocabularies (CSP2). Consequently, its integration into structured metadata pipelines
remains limited. The feature functions primarily as a community-curated signal layer for research
discovery rather than a source of machine-actionable metadata (CSP6).

OpenML is a collaborative platform designed for sharing datasets, ML tasks, and experiment results,
with a strong focus on traceability and reproducibility (CSP1, CSP3). OpenML provides a REST API and
a Python client library for programmatic access, offering excellent machine actionability and semantic
transparency (CSP2, CSP4). It aligns closely with FAIR principles and supports metadata standards,
including the use of standardized vocabularies and experiment tracking formats (CSP5). It also integrates
with platforms like scikit-learn and supports schema extensions such as Croissant ML, reinforcing its
role in interoperable ML metadata ecosystems (CSP6).

Summary. ML platforms vary widely in their metadata practices, reflecting differing goals, com-
munities, and technical architectures. OpenML and MLCommons support structured, FAIR-aligned
metadata, while GitHub and Hugging Face rely on unstructured formats, limiting interoperability and
automation without additional enrichment. Zenodo offers openness and persistent identifiers but lacks
ML-specific schema support. Kaggle provides structured metadata within its ecosystem, though with
limited external integration. Hugging Face Trending Papers serves as a lightweight discovery interface
for recent ML research, but lacks the metadata depth and structure needed for integration into interop-
erable systems. Overall, while foundational infrastructure exists, metadata practices across platforms
remain fragmented. Increased adoption of common schemas, shared vocabularies, and standardized
metadata pipelines is essential to enable reproducibility, discoverability, and cross-platform alignment
in the ML research ecosystem.

3. Existing Metadata Standards Relevant to ML

Having examined how metadata is currently structured and exposed across major ML platforms, we
now turn to the metadata standards that underpin or could enhance these practices. In this section,
both general-purpose and ML-specific metadata standards are provided, assessing their applicability to
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describing ML models and datasets, especially in terms of semantic interoperability and cross-platform
alignment. This dual focus matters in reconciling the maturity of general-purpose standards with the
specific needs of ML metadata. The selection of standards and initiatives presented here followed a
structured but pragmatic approach: we considered those (i) explicitly referenced or adopted by major ML
platforms, (ii) widely recognized in the broader research data management ecosystem, or (iii) discussed
in the existing literature and community initiatives on FAIR and reproducible ML.

3.1. Criteria for Selecting Standards (CSS)

To evaluate metadata standards for their suitability to describe ML artifacts, five criteria are defined.
These criteria reflect key technical and conceptual requirements for supporting structured, interoperable,
and FAIR-compliant metadata infrastructures in ML.'?

+ CSS1: Relevance to ML Artifacts refers to whether the standard is directly applicable to describing
ML models, datasets, or experimental workflows.

« CSS2: Adoption in Research Platforms considers whether the standard is integrated into widely
used repositories, infrastructures, or policy frameworks.

« CSS3: Semantic Expressiveness reflects the degree to which the standard supports formal semantics
such as RDF, OWL, or Linked Data principles.

« CSS4: FAIR Alignment evaluates the extent to which the standard contributes to the achievement
of FAIRness, through persistent identifiers, license fields, access protocols, or reuse of vocabularies.

« CSS5: Maturity and Stability examines whether the standard is well-specified, actively maintained,
and supported by an established community. Considerations include specification completeness,
release frequency, and ecosystem support.

These criteria are consistently applied when analyzing standards grouped under general-purpose and
ML-specific metadata categories.

3.2. General-Purpose Metadata Standards

These standards are widely used across disciplines and provide essential scaffolding for metadata
representation.

Schema.org is a widely adopted for annotating datasets, software, and publications on the web (CSS2,
CSS5). The use of JSON-LD enables integration with the Semantic Web (CSS3), and its popularity
supports interoperability across systems (CSS4) [14]. While Schema.org does not provide native support
for ML-specific entities, e.g., model architectures, training configurations, or evaluation results, it
is partially applicable to ML contexts due to its flexible class structure and extensibility (=CSS1; cf.
Figure 2). To address its ML limitations, there are extensions that aim to improve the coverage of
software (e.g., CodeMeta [15], maSMPs [16], Croissant ML for datasets [12], and FAIR4ML for ML
models [17].

DataCite is a prominent metadata schema designed for the citation and identification of research
artifacts, including datasets and software (CSS2, CSS5). It captures administrative and provenance
metadata such as creator, publisher, DOI and publication date (CSS4), but lacks technical or
ML-aware descriptors (=CSS1). Its semantic depth is limited as it relies on key-value pairs (—CSS3),
and its rigid schema complicates extensions for ML purposes. However, its integration with persistent
identifier infrastructures makes it essential for ensuring the citability and long-term preservation of
research artifacts.

BNotation: CSSi indicates full support for criterion 4; = CSSi indicates partial support; ~CSSi indicates lack of support.



DCAT is a widely implemented vocabulary for describing digital resources and dataset catalogs (CSS2,
CSS5). It defines core classes such as dcat:Dataset, dcat:Catalog, and dcat:Distribution,
supporting discoverability and interoperability across data catalogs (CSS3, CSS4). However, it is not
designed for ML artifacts (=CSS1), and do not accommodate extensions for tasks, models, or evaluation.
Therefore, its function better as bridging vocabularies than as standalone solutions for ML-specific
metadata integration.

3.3. ML-Specific Metadata Standards

The limitations of general-purpose standards in describing ML-specific artifacts have led to the emer-
gence of dedicated metadata standards designed to capture the unique semantics of ML, offering greater
granularity, semantic expressiveness, and task-specific coverage.

Croissant ML [12] is a JSON-LD metadata specification developed by Google to describe ML
datasets (CSS1). It provides detailed structure descriptions for dataset components, including fea-
tures, files, licences, and schema types, enabling machine-actionable metadata and alignment with FAIR
priciples (CSS3, CSS4). Though still emerging (CSS2), it demonstrates strong extensibility and is built
upon mature vocabularies and schemas like Schema.org (=CSS5; see Figure 2).

Model Cards [18] are semi-structured documents designed to communicate the usage scenarios,
limitations, evaluation metrics, and ethical considerations of ML models (CSS1, CSS4). They have
moderate adoption in applied ML communities (CSS2), especially in platforms like Hugging Face.
However, Model Cards are primarily designed for human interpretation and lack a formalized schema or
machine-actionable structure, limiting their semantic expressiveness and integration (—CSS3, ~CSS5).

FAIR4ML™ [17] is an ontology-based extension of Schema.org designed to enhance the FAIRness of
ML model documentation (CSS1, CSS3, CSS4). It introduces semantically precise terms for modeling
evaluation metrics, intended applications, and tasks, thereby enabling machine-actionable metadata
across ML workflows. Despite its rich semantic expressiveness, it is relatively new with limited adoption
in mainstream ML platforms (—CSS2), and its tooling ecosystem is still developing (—CSS5).

ML Schema’® is a lightweight, extensible vocabulary for describing ML experiments, models, al-
gorithms, and metrics (CSS1, CSS3). It enables semantic annotation of ML workflows and supports
integration with linked data infrastructures, aligning well with FAIR principles (CSS4). While seman-
tically expressive and conceptually accessible, ML Schema has seen limited adoption in major ML
platforms (—CSS2), and its tooling ecosystem is still underdeveloped, with minimal support (= CSS5).

OntoDM-core [19] is a foundational ontology for the data mining domain that provides a formal
representation of core concepts such as data, tasks, algorithms, models, and results (CSS1, CSS3, CSS5).
It supports logical inference and reuse across domains. However, it has limited uptake in mainstream
ML platforms (— CSS2) and only partial alignment with FAIR practices (=CSS4).

Expose Ontology [20] focuses on modeling the experimental design and execution of data analysis
processes, with a particular emphasis on provenance (CSS1, CSS3). It is semantically rich and com-
plements PROV-O ¢, but has seen little adoption outside specific projects (— CSS2) and lacks broader
tooling support (— CSS5). Its alignment with FAIR is partial (= CSS4).

DMOP [21] addresses the optimization dimension of data mining and ML workflows, especially in
relation to algorithm selection, hyperparameter tuning, and performance evaluation (CSS1, CSS3, CSS5).
DMOP is semantically expressive and extensible, making it suitable for modeling complex ML pipelines
and adaptations in domains like AutoML or meta-learning. However, its adoption is niche (— CSS2),
and its alignment with FAIR principles lacks sufficient support (— CSS4).
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MEX [22] offers alightweight vocabulary for describing ML experiments, including datasets, algorithms,
hyperparameters, and results (CSS1, CSS3,CSS4). MEX has not seen significant adoption in mainstream
ML repositories or tools (—CSS2). Its formal specification is available, but the ecosystem around
implementation, tooling, and maintenance remains limited (—CSS5).

Schema.org
DataCite
DCAT
Croissant
Model Cards
FAIR4ML
ML Schema
OntoDM-core
Expose Ontology
DMOP

MEX

Figure 2: Heatmap of metadata standards evaluated against five ML-relevant criteria. Each row represents
a metadata standard, and each column corresponds to a specific evaluation criterion: CSS1: Relevance to ML
Artifacts, CSS2: Adoption in Research Platform, CSS3: Semantic Expressiveness, CSS4: : FAIR Alignment, and
CSS5: Maturity and Stability. Scores are normalized as follows: 1 indicates full support for the criterion, 0.5
indicates partial support, and 0 indicates lack of support. This visualization highlights which standards most
comprehensively fulfill the requirements for interoperable, machine-actionable metadata in ML ecosystems.

Summary. This section outlines the distinction between general-purpose and ML-specific metadata
standards. Mature and widely adopted standards such as Schema.org, DataCite, and DCAT support
discoverability and citation but lack the semantic richness and extensibility required to describe ML-
specific artifacts, including models, training configurations, and evaluations. In contrast, ML-specific
standards, such as Croissant, FAIR4ML, ML Schema, and Model Cards address these gaps but remain
in early stages of adoption, with limited tooling. Ontology-driven approaches like OntoDM-core,
Expose, DMOP, and MEX provide formal representations and reasoning capabilities but vary in scope
and maturity. As expected, no single standard fully satisfies all requirements. Figure 2 presents a
comparative evaluation based on criteria defined in Section 3.1, showing that general-purpose standards
score well on adoption and maturity (CSS2, CSS5) but poorly on ML relevance (CSS1), while ML-specific
and ontology-driven approaches provide higher semantic expressiveness (CSS3) yet limited adoption (CSS2).
Moreover, a summary of these standards covering primary focus, semantic expressiveness, machine-
actionability, support for provenance, support for ethical/bias information, and extensibility, is provided
in Table 1 in Appendix.

4. Metadata Harmonization

The heterogeneity and fragmentation of metadata practices across ML platforms and standards introduce
substantial barriers to interoperability. Even when a structured metadata is used, it is often implemented
with divergent schemas, inconsistent vocabularies, and varying levels of detail. For example, platforms
such as GitHub, Zenodo, Hugging Face, and OpenML differ in how they represent authorship, tasks,
licensing, and performance metrics, making direct alignment difficult without additional normalization
or transformation. These inconsistencies hinder the seamless integration and reuse of metadata across
systems, complicate downstream applications that rely on unified metadata, and ultimately reduce
the discoverability, traceability, and reproducibility of ML artifacts. Addressing these issues requires



effective strategies for metadata extraction, mapping, and harmonization across heterogeneous sources.

4.1. Challenges in Metadata Harmonization

Harmonizing metadata from heterogeneous platforms introduces several challenges:

+ Schema Heterogeneity: Different platforms adopt different data models, property labels, and
data types to describe the same concepts. For instance, the property referring to the creator of a
model may be labeled as author in Schema.org, creator in DataCite.

+ Vocabulary Inconsistencies: Even when schemas are conceptually aligned or share a common
vocabulary, communities may interpret the same terms differently, leading to semantic drift. For
example, the same ML task may be labeled as classification, categorization, or label prediction, or
conversely, the term accuracy may refer to different evaluation protocols depending on context.
These inconsistencies complicate cross-platform querying, semantic alignment.

+ Granularity Mismatch: Metadata varies in depth and detail across platforms. Some platforms
provide high-level descriptors (e.g., model family and task domain), while others offer fine-
grained specifications such as hyperparameters, environment settings, or evaluation protocol.
For example, a large language model may be referred to simply as LLaMA, or more precisely as
LLaMA-7B or LLaMA-13B, each with distinct architectures and training settings. Aligning across
these granularity levels requires careful abstraction or enrichment strategies.

« Semantic Ambiguity: Some commonly used terms are themselves semantically vague or over-
loaded. For example, accuracy may refer to different evaluation metrics (e.g., Top-1 vs. Top-5),
data splits (e.g., test vs. validation), or output settings (e.g., single-label vs. multi-label), unless
explicitly defined.

+ Unstructured Metadata: Crucial metadata is often embedded in free-text sources such as
README . md files, model cards, or publications. While information extraction (IE) techniques can
be applied, the process does not always yield structured outputs that are complete or reliable
enough for downstream integration tasks.

+ Provenance Gaps: Many metadata records lack information about the origin and transformation
history of datasets and models, limiting trust and traceability.

4.2. Techniques for Metadata Harmonization

Metadata Mapping and Crosswalks. A common approach to dealing with metadata heterogeneity
is via mapping concepts from one standard to another. Metadata mapping can be applied to a broad
set of cases, — from less semantic approaches (e.g., DataCite), to non-semantic ones (e.g., model cards
or schemas used internally in a specific platform), to semantic ones (ontologies). In line with this
idea, metadata crosswalks [23] are nowadays used to map metadata. Usually manually defined, they
map properties in different schemas, and are often managed and structured as spreadsheets. Metadata
crosswalks provide interpretability and flexibility, but they are labor intensive, error-prone, and difficult
to scale. Moreover, they lack formal semantics, limiting their utility in Linked Data and automated
environments, which limits their applicability.

To improve traditional methods, structured mapping frameworks like the Simple Standard for Sharing
Ontology Mappings (SSSOM) [24] have been developed. SSSOM enables formal, machine-readable
mappings with metadata for provenance, alignment type (e.g., exact, broader), and confidence scores.
For instance, the concept DataCite: creator can be mapped as skos:exactMatch to the concept
schema:author. SSSOM-style mappings are being piloted in tools like the NFDI4DS QA[25] service !’

https://nfdi-search.nliwod.org/
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to enable structured integration across metadata schemes. A modified version is being used for the
update of CodeMeta '® crosswalks.

Despite these advances, large-scale adoption of semantic crosswalks remains limited. The creation of
high-quality semantically precise mappings still relies heavily on expert curation, which is a bottleneck
for scalability.

Automated Extraction and Harmonization. Automated techniques enhance scalability and con-
sistency in metadata harmonization by reducing manual effort. NLP methods, such as named entity
recognition, relation extraction, and classification, are widely used to extract structured metadata
from sources like README files, model cards, and research papers [26]. These approaches identify
entities (e.g., models, datasets), relationships (e.g., "trained on"), and attributes (e.g., license, metrics).
Schema matching and ontology alignment aim to reconcile concepts across metadata schemas using
lexical, structural, or instance-based similarity. Recent approaches incorporate embeddings and LLMs to
improve semantic alignment [27, 28]. Following extraction and alignment, validation and normalization
ensure semantic consistency across metadata sources [29], using rule-based constraints or ontology-
aware checks. While automation improves efficiency, expert oversight remains essential for accuracy
and explainability in integrated metadata pipelines.

Summary. Metadata harmonization is a persistent challenge in ML due to fragmented schemas,
inconsistent vocabularies, and missing provenance. Manual approaches like crosswalks and SSSOM
offer structured mappings but require expert effort. Automated methods, such as NLP-based extraction,
schema matching, and validation, enhance scalability but still face issues of accuracy and explainability.
A hybrid approach that combines semantic precision, automation, and expert oversight is essential to
build interoperable and reusable metadata infrastructures.

5. Gaps, Limitations, and Research Opportunities

Despite ongoing efforts to formalize metadata practices in ML, the current landscape remains fragmented
and underdeveloped in several critical areas, opening compelling directions for future research.

5.1. Current Gaps and Limitations

A major limitation is the absence of a unified, comprehensive metadata standard tailored to the full
lifecycle of ML artifacts. While efforts such as FAIR4ML and ML Schema have made notable progress,
no widely adopted standard exists yet that captures the full range of ML entities, including models,
datasets, evaluation metrics, workflows, and ethical dimensions, in an integrated and expressive way.
Another persistent challenge lies in the representation of dynamic metadata. ML models and datasets
are inherently mutable, often updated through processes such as fine-tuning, retraining, or automated
CI/CD pipelines. Existing metadata standards are largely static in design and tend to focus on fixed
snapshots of artifacts. As a result, they provide limited support for describing evolving provenance,
behavioral shifts, or version histories in a machine-actionable and consistent manner.

Scalability presents an additional concern. Current integration strategies often rely on manual
curation or semi-automated tools that do not scale effectively to the growing volume and diversity of
ML artifacts across platforms. Furthermore, automated and robust metadata integration pipelines remain
in an early stage of development. Finally, while bias documentation is becoming more standardized,
broader aspects of ethical metadata, including privacy, safety, explainability, and societal impact, are
not yet consistently represented across standards or platforms. At this point, a general-purpose ethical
metadata vocabulary for ML is still lacking.

https://codemeta.github.io/
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5.2. Future Research Directions

Addressing these limitations calls for several targeted lines of investigation. First, there is a growing
need for methods to automate metadata extraction and generation. Future research should leverage
advances in NLP, code analysis, and LLMs to infer structured metadata from documentation, code
repositories, and execution traces, thereby reducing reliance on manual input. Second, the development
of semantic interoperability frameworks for ML is crucial. Such frameworks should combine extensible
terminology solutions (ontologies, vocabularies, etc.), possibly with Linked Data principles for machine
readability, to enable automated alignment and querying across heterogeneous platforms. Research is
particularly needed in automated ontology matching and mapping tailored to the ML domain, which
remains underexplored. Third, standardization efforts around ethical AI metadata should be expanded.
This includes formalizing descriptors for fairness, transparency, accountability, and explainability,
potentially as extensions to existing efforts like Model Cards. These standards should aim to be both
human-interpretable and machine-actionable. Lastly, future work must address the management of
dynamic and versioned metadata. Novel models and infrastructures are required to track the evolution
of ML artifacts over time, capturing temporal and contextual changes in training data, hyperparameters,
and performance outcomes.

Together, these research directions represent a roadmap toward more robust, scalable, and ethically
grounded metadata ecosystems for ML.

6. Conclusion

The growing availability of ML models and datasets highlights the compelling need for structured,
standardized metadata supporting research artifacts across repositories. This survey analyzed metadata
practices and standards for ML artifacts, identifying challenges such as schema heterogeneity, inconsis-
tent granularity, and unstructured documentation that impede integration and semantic interoperability.
Strategies such as schema alignments, crosswalks, and the use of shared conceptual models enable
integration and semantic interoperability across platforms, supporting consistent interpretation of
metadata despite underlying heterogeneity. While initiatives like Model Cards and FAIR4ML show
promise, gaps remain in unified ontologies, dynamic metadata management, and automated tooling.
Addressing these limitations requires sustained community effort, not only in developing and adopting
robust metadata standards, but in establishing a uniform conceptualization of the ML life cycle. Such a
shared foundation would facilitate consistent mappings between standards and improve best practices
in applying them. This collective effort is essential for building scalable, FAIR-compliant metadata
infrastructures that support discovery, traceability, and reuse across the ML ecosystem.

As a continuation of this survey, future work will focus on exploring the practical integration of
standardized metadata into downstream ML applications, such as KGs for semantic search and discovery.
This step will further enhance the insights provided by this survey by expanding the exploration of
how FAIR metadata supports automation, reproducibility, and knowledge discovery across the ML
ecosystem. This work will be addressed in a forthcoming version of the study with an extended scope.
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A. A summary of Existing Standards



Table 1

Overview of existing standards.

Standard Primary Focus Semantic Expressiveness Machine-actionability Support for Provenance Support for Ethical/Bias Info Extensibility
Schema.org generic web content low to moderate (broad coverage no deep semantics) high yes no high
DataCite research outputs bibliographic and administrative metadata moderate yes no low, very strictly defined
DCAT datasets in web catalogs moderate (RDF vocabulary, supports linking datasets...) high yes no high
Croissant ML datasets moderate (Structured metadata using JSON-LD) high yes yes high
Model Cards ML models low (no formal semantics) low no yes moderate
FAIR4AML FAIR metadata for ML models moderate to high high yes yes high

ML Schema ML experiments, models, algorithms, metrics high (OWL-based schema) high no no high
OntoDM-core data mining and ML ontology moderate high yes no high
Expose Ontology ML experiment design, provenance focused  high (OWL-based with terms for ML configurations and executions.) high yes no high
DMOP ML workflows high (Highly expressive OWL ontology) high yes no high

MEX ML experiments moderate (light OWL-based schema) high yes no moderate
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