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Abstract

We present MOP (Metadata Optimization Pipeline), an application to harmonize and enrich heterogeneous
metadata from scientific knowledge graphs. Such metadata often varies widely in its quality, completeness,
and consistency, particularly in freetext fields like titles and descriptions, which negatively impacts finadability.
MOP addresses this limitation by leveraging large language models (LLMs) to enrich existing metadata or
generate missing fields. In a multi-stage enrichment process, LLMs are used to generate summaries from the full
text of open-access resources, which then serve as input to produce additional metadata fields. This enriched
metadata is stored separately from the original records, preserving the integrity of human-curated data while
still enhancing discoverability and usability of the resource metadata. In this paper we discuss implementation
details, analyze LLM output quality, and reflect on challenges encountered and lessons learned, particularly with
regard to managing compute resource limitations. MOP demonstrates a practical, modular approach to improving
functional metadata quality through LLMs in large, distributed knowledge graphs.
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1. Introduction

Knowledge graph-centric metadata aggregation systems operate on a wide array of distributed sources,
resulting in metadata which is often heterogeneous, sparse, and inconsistently structured, particularly
in freetext fields such as titles and descriptions [1, 2]. These inconsistencies stem from the varied
requirements and guidance followed by individual repositories, which are themselves shaped by local
institutional practices and technical constraints. Poor metadata quality can hinder searchability, reduce
findability, and compromise semantic interoperability across systems, ultimately limiting the utility
of aggregated resources for end users and downstream applications. This is a known problem for
repositories indexing objects of scientific knowledge such as scholarly articles, academic works, or
research artifacts.

To address these challenges, we present the use of a large language model (LLM) [3] within a targeted
metadata enrichment pipeline for unreliable or incomplete metadata records. LLMs excel at producing
fluent text and synthesizing unstructured content into coherent narratives [4], making them well-suited
to generating fields such as title, description, and keywords. At the same time, LLMs cannot be trusted
to reliably produce schema-compliant output or follow strict vocabulary constraints. We believe that
effectively capitalizing on LLM strengths while mitigating their limitations results in a tradeoff that
prioritizes stability and maintainability over achieving state-of-the-art results.

This work presents MOP (Metadata Optimization Pipeline), a concrete and deployed application
for cleaning up messy metadata records. It integrates Semantic Web technologies such as linked data
principles [5] and SKOS vocabularies [6] with LLMs to address real-world challenges in metadata
aggregation. Structured fields such as keywords and subjects, which must conform to specific data
models or controlled vocabularies, are post-processed using lightweight correction functions and
mapping utilities to ensure consistency and compliance with our knowledge graph schema [7]. Our
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system tackles practical issues of semantic interoperability, schema compliance, and data quality that
arise when harmonizing heterogeneous metadata across distributed repositories. We provide evidence
of implementation decisions, post-processing strategies, and the constraints faced during deployment,
such as scalability concerns. By combining LLMs with a schema-aware enrichment pipeline, this work
exemplifies how LLMs can enhance knowledge graphs without compromising their structural integrity.
As an example use case, we apply MOP to an open educational resources (OER) repository, which
contains varied scientific works ranging from texts to experiment notes to software. However, it is
generally resource-agnostic and can be applied to other domains. Moreover, the lessons learned and
design decisions we have faced are valuable and informative for any similar works.

This paper is structured as follows. First, section 2 provides an overview of the data sources and
applicable use case. Details of our approach are described in section 3. Then section 4 shows an example
of the system results in the frontend and describes common error types. Afterwards in section 5, we
present discussion points around implementing such systems and explain how our approach has evolved.
Related work is presented in section 6. Lastly, section 7 concludes this paper and presents possible
future work.

2. Data Source and Use Case

Our work is grounded in a concrete in-use application: MOP has been developed on OERSI (Open Edu-
cational Resources Search Index), a federated search platform aggregating metadata from a wide range
of educational repositories. OERSI exemplifies the metadata challenges outlined above: heterogeneous
inputs, inconsistent freetext descriptions, and varied schema adherence across sources. It connects a
wide range of OER sources, including state initiatives, university and library repositories, and subject-
specific collections. OERSI has been developed collaboratively by the Hochschulbibliothekszentrum des
Landes Nordrhein-Westfalen (hbz) and the German National Library of Science and Technology (TIB)
as an open-source project and is used by ministries in all German states, especially the states of Lower
Saxony, North Rhine-Westphalia, and Hesse.! All development takes place publicly on GitLab?.

Rather than storing educational content directly, OERSI aggregates and standardizes metadata from
diverse sources, allowing users to perform uniform searches across its network of connected repositories
without duplicating the content. The structure is based off of the Allgemeines Metadatenprofil fiir
Bildungsressourcen (AMB). This schema for describing educational resources across different contexts is
primarily built on Schema.org and the Learning Resource Metadata Initiative (LRMI), with supplementary
use of elements from the Simple Knowledge Organization System (SKOS).

The connected sources in OERSI contain metadata following different schemas, with varied require-
ments and guidelines for text input. Each source (or source type, i.e. EduSharing instance) has a custom
mapping to the OERSI schema. While this always results in a technically correct representation, the
quality and utility of the resulting metadata representation varies, most especially in freetext fields.
Some of the weakness are outlined below.

« Titles: The original titles of resources may make sense in the context of their hosting repository,
but may be inconsistent or uninformative outside of it, such as “Lecture 09. RNA.: Part 2”, which
lacks meaningful context outside of its specific course sequence.

« Descriptions: Many resources either lack descriptions entirely or only offer extremely brief
summaries. Others describe the institute or process which produced the work but say little of the
work itself. And still others describe the intended audience of the resource but not the content.
While these latter two styles are informative in their own right, more content-specific information
could nonetheless improve their discoverability and usefulness.

Tn the months of April, May, and June 2025, OERSI received almost 1 million (965,149) requests through the API and more
than 63,000 visits to the website.
*https://gitlab.com/oersi
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+ Keywords: The majority of resources (approximately two-thirds) indexed by OERSI do not have
keywords, which can be useful for getting a very quick overview of the resource or support with
subject classification.

« Subject: This property is highly significant for filtering, but is not present for all resources, or is
sometimes a top-level concept when a more specific classification would be more precise and
relevant.

Additionally, some content which would be helpful for presenting search results to users is not part
of the schema.

« Card descriptions: For user interfaces like search result cards, a concise, single-sentence
summary is ideal. However, the first sentence of a description is not always suitable for this
purpose, as it may be too vague, overly technical, or lack standalone clarity.

OERSI imposes very few required fields in order to maximize the resource coverage. Nonetheless,
certain fields are highly valuable for enabling effective discovery and leaving them out is limiting. Some
repositories, especially for open textbooks, lack subject classification. If subjects could be reliably and
accurately assigned, it would significantly enrich the findability of these materials. One challenge to
doing so, however, is the need for the generated subjects to follow a controlled vocabulary. In our
system, subject terms must conform to the Hochschulfichersystematik, or Higher Education Subject
Classification, a standardized higher education subject taxonomy based on the German statistics office’s
(Destatis) classification of subject groups, study areas, and study subjects, which is commonly used in
Germany and Austria.

To address these limitations without interfering with the integrity of human-generated and -curated
metadata, MOP introduces a parallel layer of automatically-generated enrichment. The goal is to
generate supplementary metadata fields, such as improved descriptions, titles, or subject classifications,
which users may optionally view alongside the original metadata. These enriched fields are stored as
separate properties to preserve provenance and enable transparent differentiation between human and
LLM-generated content. The following sections outline how MOP retrieves source material, extracts
and processes its content as text, generates metadata using LLMs, and stores the LLM output.

3. MOP Architecture

The architecture of MOP is modular. There is as little coupling as possible between the modules so that
the individual modules can be easily adapted or replaced. While some domain- or resource-specific
configuration is necessary, particularly for taxonomy alignment and language handling, the pipeline
is designed to be modular and schema-agnostic, allowing key components (e.g., prompt templates,
postprocessing, subject mapping) to be adapted independently. This makes it easier to reuse MOP and
adapt it to other usage scenarios. All code is fully accessible to the public in our GitLab repository®.

3.1. Loading Data

MOP has been built as a supplementary module to OERSI, but with its own separate and self-contained
architecture. The application begins by fetching metadata records from the OERSI index. Although most
of the resources indexed in OERSI have an open license, MOP only processes records that explicitly
permit derivative works. For each such record, the application extracts the direct download link to the
resource, if present. These links are then used to retrieve the actual resource files. Upon successful
retrieval, MOP processes the content by extracting textual data, either through text extraction for PDF
files or transcription for AV files. For PDF files, the bytes in the HTML response are decoded and parsed
as text.* For AV file types, only the audio is processed using the Faster Whisper model to transcribe

*https://gitlab.com/oersi/sidre/metadata-optimization
“The pypdf package was used for processing PDFs.
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Figure 1: Loader Module: Loading data from the original OER metadata in various modalities to acquire the
full text for further processing.
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Figure 2: Generator Module - Summary: Generating a summary of the full text to be used for downstream
requests. The number of sections is determined by the tokenized length of the full text plus prompt, divided by
the LLM context size.

the content into text. The resulting full text of each file is then cached locally as a plain text file. This
workflow is depicted in Figure 1.

3.2. Generating LLM Enrichments

Workflow. The generation module of the MOP pipeline comprises two phases that apply LLMs to
enrich each resource with additional metadata. The first phase is responsible for generating a summary
based on the full text of the resource. Because the full text may be quite lengthy, it is first necessary
to determine if it exceeds the context size of the LLM. For this we use the model’s own tokenizer to
correctly tokenize (i.e., chunk words into smaller lexical units) the full text as well as the prompt. If their
combined tokens exceed the context window of the LLM, the text is segmented into smaller sections.
The segmentation is done by identifying the longest possible sequence of tokens that fits within the
context window and then locating the last sentence-ending punctuation mark (period, exclamation
mark, or question mark) within that window. Each section is then individually summarized, with all
sectional summaries concatenated in order to produce a coherent overall summary for the resource.’
Resources for which a summary cannot be generated are excluded from further processing. See Figure 2
for a representation of this process.

The second phase focuses on generating additional metadata fields, the selection of which is config-
urable. The currently supported fields are description, short description (optimized for search result

3Only if the concatenated summaries would later exceed the available amount of tokens, the summarization is performed
again - this time with the summaries themselves.
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Figure 3: Generator Module - Metadata: Generating individual metadata fields using as input the LLM
summary, property-specific prompt, and schema information of expected data type and, for subjects, the subject
hierarchy vocabulary. The output is then checked against a validator to ensure schema compliance.

cards), title, keywords, and subjects. For each field, the LLM is queried separately, using the previously
generated summary as input, and additional fields from the record metadata — such as title or resource
type (Textbook, Exercise, Lesson Plan, etc) — may be included depending on the configuration specifica-
tion. Queries for subjects also include the controlled vocabulary for reference, with instruction that the
generated subject must conform exactly to one of these options. (Refer back to section 2 for details on
the controlled vocabulary we use.) The output is validated against a predefined JSON schema and then
all successfully generated metadata and summaries are cached in a local relational database for future
retrieval and reuse. This workflow is shown in Figure 3.

LLM Model. The choice of language model affects both the performance and the infrastructure
surrounding the service [8]. Considering that LLMs require a lot of compute to be able to function
properly for a production-ready service, and taking into account the internal constraints on hardware
requirements [9], we investigated LLMs with fewer than 40B parameters.® An additional requirement
was that the model must be free and open-source. We selected Qwen2.5 7B after performing a small
comparative study’ between Qwen2.5, LLaMA 3 8B Instruct, and Phi-3.5, and finding it performed the
most consistently. The model is strong at multilingual text generation, it was finetuned particularly on
long-text summarization and information extraction, and most importantly it has a context window
that is on the larger end of the scale which can accommodate 131K tokens. Considering that several of
the OER repositories we operate on contain textbooks, a large context size is highly valuable. (That said,
at the moment, the compute resources available to us for this project do not permit taking advantage
of the maximum context size.) Another aspect to consider carefully is the choice of the LLM engine
that will serve the model and its services. Various options are created and are still being worked on by
the community to serve as viable options. We chose Ollama as it offers an easy onboarding process
and provides access to plenty of open-source models that are compatible with it. Furthermore, it offers
quantization support to enable low-resource systems to run LLMs.

Ensuring Schema Compliance. One challenge of incorporating LLM-generated data into linked
data is maintaining schema integrity. For this, we implement a lightweight validation and correction
pipeline. While most of the enriched fields (e.g., title, description) are freetext and thus inherently
unstructured, certain fields - such as keywords and subject - require structured representations. Since
LLM outputs are returned as raw strings, it is necessary to validate and, where needed, correct the
generated content to meet these structural requirements. We employ JSON Schema for validation
and use a set of type correction functions to address common format inconsistencies. These include
simple heuristics to transform strings or dictionaries into arrays, enforce homogenous item types within
lists, and serialize complex types into the required formats. This approach has been informed by our

The choice of the threshold is experimental, and based on consultations with industry and research experts.
"We qualitatively evaluated four prompt types across six resources and found Qwen2.5 to be the most consistent in output
quality. See the Appendix for more information.
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observations of typical LLM output errors on our specific data.

Generating valid subject metadata presents particular challenges due to the need for output aligned
with a controlled vocabulary and the complexity of subject classification itself. In addition to conforming
to the taxonomy of Hochschulfachersystematik, or Higher Education Subject Classification, they must
be represented as a structured JSON object containing a unique identifier and at least one language-
tagged preferred label. To map LLM-generated subject strings to valid entries in this taxonomy, we
perform a normalization step (removing punctuation, enforcing string types, and stripping extraneous
characters) on the generated term before checking it against a predefined mapping dictionary. If a valid
match is found, the term is transformed into the expected format with a persistent URI and English
label. If no match is found, the subject is discarded.

3.3. Updating Records

The final module in the MOP architecture is the updater, which provides the LLM-generated metadata
to OERSI. An API provided by OERSI is used for this purpose. Metadata imported via this API endpoint
is made available immediately in the OERSI metadata and is also stored for future inclusion after
subsequent update cycles. This process runs asynchronously to metadata harvesting in OERSI and
therefore has no noticeable effect on that process. The MOP architecture has been designed in such a
way that the output process can be changed relatively easily so that other output methods can be easily
implemented in the future.

4. LLM Output

A screenshot showing how LLM-generated metadata is presented in the frontend of the OERSI test
system is shown in Figure 4. Overall, the output quality of modern LLMs is high, and our pipeline
produces fluently written and mostly relevant metadata for the majority of records. The LLM generally
performs well enough for us to proceed to production with the system, given that users are clearly
informed about the provenance of all LLM-generated content.® Moreover, each metadata record in
OERSI includes a "Report record" button that opens a generic contact form with a freetext field. This
creates a Gitlab issue which is then manually reviewed. In this way, users are able to easily provide
feedback on the content.

Nevertheless, we observe several recurring issues that limit the reliability of generated content and
highlight areas for further care. These issues include hallucinated content, inconsistencies, minor
language errors, and difficulty generating labels from a controlled vocabulary.

4.1. Hallucinations and Other Errors

One of the most prominent issues are the so-called hallucinations, in which the LLM states as fact
information that is not supported by the source material. This occurs in a range of forms, from minor
inaccuracies to major conceptual misrepresentations, although these appear to be rare in our application.
The model may fixate on a single example or element from the source material and present it as the
primary topic, even when this is not reflective of the broader context. Other problems involve subtle
omissions. In one example, the generated description of a resource tailored for a specific educational
platform did not mention that platform at all. While not incorrect per se, such omissions reduce the
specificity and utility of the result. We have also observed occasional spelling mistakes or strange
phrasing, particularly when mixing German and English languages. While prompt tuning and better
instruction design seem to have helped mitigate this, some such inconsistencies are expected to persist.
However, with the possible exception of the language errors, each of these issues still persists in
even much larger state-of-the-art models [10]. As such, hallucinations, omissions, and other such
inconsistencies are less isolated errors and more a systemic limitation of the current technology.

¥See the Appendix for links to examples in production.
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The Open Digital Archaeology Textbook

Author
Shawn Graham, Neha Gupta, Michael Carter, Beth Compton, Jolene|Angourakis, Andreas Smith, Andrew
Reinhard, Kate Ellenberger, Zach Batist, Joel Rivard, Ben Marwick, Rob Blades, Cristina Wood

Description

An introduction to the issues, methods, and techniques of digital archaeclogy, integrated with working
code and virtual computing environments or 'notebooks' written in Python or R The only thing you'll need
is a browser! Intended for second or third year students, all materials are creative-commons licensed, and
may be remixed to suit your instructional purposes. Funded by eCampusCntaric.

’/Description (Al generated, BETA) )
The Open Digital Archasclogy Textbocok is an extensive guide that integrates digital methods into
archaeclogical research, suitable for educational purposes with open contribution features. This resource
covers varous techniques including 3D printing, Raspberry Pi fieldwork, GIS data visualization, and
augmented reality to enhance practical applications in archaeology. It also delves into computational
models like the Pond Trade model and computer vision using CNNs, all while emphasizing ethical
considerations. The textbook indudes exerdises, further readings, and accessible formats through Jupyter
notebooks, making it an invaluable tool for students and professionals alike. Its focus on data lifecyde
management and agent-based modeling in sodial dynamics provides a comprehensive foundation in

\_digital archaeclogy. Y,

Figure 4: Frontend Display: Screenshot of an OERSI details page (from the test system) showing both the
original description, in the green box, and the generated description, in the blue box, with the labels in orange.
This screenshot has been cropped for brevity.

4.2. Subject Generation

In our case, subjects have proven to be the trickiest of the metadata fields to generate, due to their
use of a controlled vocabulary. We use the Hochschulfachersystematik (or Higher Education Subject
Classification) vocabulary, which is an extensive academic subject taxonomy for higher education’.
When generating subjects by the LLM, only the top two levels of the hierarchy are included in the input,
and the model is instructed to answer with only and exactly a term from this taxonomy. However,
restricting LLM output to a controlled terminology via prompts remains an open area of research [11].
While effective at times, the labels generated by the LLM are often inaccurate. Sometimes the generated
label is a valid subject term in our vocabulary, but an inaccurate classification of the resource. Other
times, it generates a label which is not part of our vocabulary, and is therefore discarded. It may be that
the meta-context of the request from within the sphere of OER metadata and the presence of so many
subjects in the prompt is leading to unpredictable results. We have determined that LLM performance
is still too varied in our system for this field to move to production.

5. Discussion and Lessons Learned

Although our automatic enrichment pipeline already delivers useful results, its deployment and scaling-
up is still constrained by several factors. We describe them here to give the community a realistic

°It contains around 350 concepts. cf. https://w3id.org/kim/hochschulfaechersystematik/scheme
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picture of the practical constraints that can limit the deployment and operation of LLM-based metadata
pipelines.

5.1. Persistent Challenges

Language. One challenge we have encountered is the mixed use of languages across both resource
content and metadata. As a Germany-based service indexing a variety of repositories with different
intended audiences, OERSI contains resources which span a wide array of world languages, with English
and German being the most common. It is not unusual for a resource to be in either English or German
and its associated metadata to be in the other language. All enrichment prompts in our system are
issued in English, but we aim to generate metadata in the same language as the resource content. This
is particularly challenging given that even state-of-the-art LLMs can produce inconsistent output when
handling mixed-language input [12]. One possible approach would be to translate prompts into the
resource language, but this would introduce too much additional complexity at this time. Adapting
the system for each supported language would also substantially complicate prompt engineering and
validation logic. As a practical compromise, our current implementation restricts processing to English
and German resources, allowing us to focus on high-quality generation and validation pipelines in the
most common languages while acknowledging the need for future multilingual expansion.

Length. Controlling the length of generated metadata - particularly descriptions - remains an
ongoing challenge in our enrichment pipeline. While the generated card descriptions are consistently
the desired single concise sentence, generating substantially longer and more detailed content has
proved inconsistent. This is particularly problematic for summaries, which serve as the foundation for
generating all other metadata fields — making a high-quality summary a critical prerequisite for effective
downstream generation. Prompting strategies to influence output length — such as requesting a specific
number of words or sentences, or instructing the model to follow a particular structure (e.g., academic
abstract) — have resulted in only minor and inconsistent changes. This suggests that prompt-based
solutions alone are insufficient for achieving reliably longer and more detailed outputs.

Quality Control. Another open challenge is the task of evaluating the quality of the LLM output.
We have followed an example-driven assessment during the development process, primarily relying
on our own judgments, and organized one small workshop to solicit impressions from experienced
colleagues. This manual evaluation is neither scalable nor reproducible. However, we have also found it
challenging to identify quantitative metrics which meaningfully capture the "quality" of LLM-generated
metadata, particularly for free-text fields like descriptions or titles, in which clarity, relevance, and
informativeness are essential but hard to formalize. Automatic metrics such as BLEU or ROUGE could
be computed, but our hypothesis is that lexical overlap would not meaningfully reflect quality in this
case. Moreover, this would also require the development of a gold standard dataset. For now, we see a
user study as the most practically feasible assessment method, although this is not an ongoing solution.

One potential suggestion is to ask an LLM to evaluate whether the generated metadata fits the
resource content, and if not, flag that record for manual review. Recent research supports the feasibility
of using LLMs to evaluate LLM output, but it’s unclear whether these methods are ready for a production
environment. And while in theory this approach would be scalable, it would also require adding yet
another LLM request to our pipeline [13, 14].

GDPR Concerns. We have already taken note of several instances in which the LLM generated
content with author names. Because we operate in Germany, we must consider General Data Protection
Regulation (GDPR) laws concerning any personal data, which includes the names of authors, scholars,
or any other individuals. While some contexts (e.g., summarizing a history lecture that names historical
figures) are unambiguously allowed, other cases, such as incorrectly attributing ideas or generating
misleading information about real people, pose legal and ethical risks. Currently, there is no automated
mechanism to reliably detect such occurrences, as the acceptability of name mentions is highly context-
dependent. For now, we provide users with a generic “Report record” function to flag problematic
content, and will blacklist individual records from LLM content generation if necessary.



5.2. Evolution of MOP

Structured vs Unstructured Response. In the initial implementation of our pipeline, we generated
all metadata fields via a single request, instructing the model to return a well-formed JSON object.
However, this approach proved to be impractical as the model produced outputs that deviated from the
expected structure. Extracting and validating the relevant fields required brittle post-processing logic
that, when it failed, affected the entire resource. As a result, we transitioned to issuing separate requests
for each individual metadata field. While this increases the total number of LLM calls per resource, it
also minimizes the impact of failure — if one request fails or produces invalid output, the rest of the
metadata for that record remains unaffected.

This also simplified prompt engineering, as each prompt can be tailored to a specific field without
the need for complex formatting constraints or the inclusion of input data which is not relevant for
all fields. Additionally, when generating metadata fields such as titles or keywords, we found that
supplying too much information tended to produce generic or vague outputs. Our best results were
achieved by providing only the generated summary and the resource language, which likely helped the
model focus on salient content without distraction.

Full Text vs Summary. Our initial pipeline used the full text of each resource as input for all
LLM-generation tasks. However, we found that using the full text could degrade the quality of the
generated metadata: for concise fields like descriptions or keywords, too much input led to vague,
overly generic, or noisy outputs. To address this, we introduced an intermediate summarization step.
Now, we first generate a condensed summary of the full text, which is then used as input for subsequent
metadata generation. We found that this improves output quality by focusing the model’s attention
on the most salient information, although the system still requires some refinement — especially in
generating longer and more detailed summaries (see subsection 5.1 for more discussion around output
length).

One point of discussion this has raised is the difference between a summary and description. When
considering LLM output, for videos only a few minutes long or text resources of a few pages, there
may be minimal differentiation between a summary and a description. However, for longer resources,
such as lecture videos or textbooks, the summary should contain substantially more detail. Aside from
length, there is still another distinction to be made between a summary and a description: summaries
should capture the structure, scope, and key content points of a resource; a description may contain all
of those points, but it might also describe the resource at a higher level: framing its purpose, audience,
or relevance. In other words, even the LLM-generated description behaves more like a summary. For
now, we maintain the label of “description” for this generated field but may rename it.

Subject Classification. We have experimented with providing the subject taxonomy in various
formats and states of completeness. Initially, we supplied the full subject hierarchy as a JSON structure,
including both subject labels and their internal IDs. However, this approach led to confusion in the
outputs: the model sometimes mixed up labels and IDs or failed to choose appropriate subjects, likely
due to the length and complexity. We then tested a simplified version using only the top level of the
taxonomy and without IDs, which improved output significantly. Currently, we pass the top two levels
of the taxonomy without IDs, and map the strings to IDs within our module. One possible solution to
address this is via an iterative classification approach: first generate a general subject, and then narrow
down to a subfield by making a new request passing only the subfields under that subject.

Evaluator Class. To support internal development and iteration on prompt design, we introduced a
lightweight evaluator class for assessing the generated metadata. This component is not part of the
core MOP architecture but serves as a development utility. Its primary function is to calculate the
mean length of generated content for a given metadata field, in order to compare the effects of prompt
variations or model configurations over time. Length may also serve as a useful proxy for certain goals,
such as ensuring summaries are sufficiently informative.

Display of Generated Content. In designing the presentation of the LLM-generated metadata in
the frontend system, we considered how to balance clarity, usability, and transparency. Some initial
ideas were separating fields into tabs (e.g., toggling between original and generated content) and making



LLM-content visually distinct in cards using a colored background. In the end, we opted for a simpler
but clearly demarcated approach. All content is shown on the detail page, with LLM-content shown
following the original content and a label clearly marking it as Al-generated. An example can be seen
in the screenshot in Figure 4.

Availability of Generated Content. As described in subsection 3.3, the schema used by OERSI
is the product of a joint project with multiple stakeholders. Therefore, the question of whether and
how to expose the LLM-generated content via the API was also a point of discussion. We recognized
that limiting access to the frontend could create confusion, as users who see metadata in the interface
may reasonably expect to retrieve it via the API as well. From a transparency and usability standpoint,
we concluded that making the enriched metadata available through the API is preferable. However,
this change requires modifying the OERSI schema. As OERSI is a collaborative project, any schema
change must be evaluated for potential impact on existing infrastructure and approved by relevant
stakeholders. Our current plan proposes adding a separate generated_content object to the OERSI-
specific schema and introducing an optional API parameter that allows clients to explicitly include or
exclude LLM-generated fields in their results.

5.3. Resources Required

Compute availability remains the principal obstacle to production-ready deployment of our metadata
generation pipeline. As a publicly funded institute, we operate under certain budget constraints, so
procuring a dedicated GPU with more than 24GBs of VRAM is currently infeasible. Reliance on shared
infrastructure has already exposed hard limits: during the first week of May 2025, every job submitted to
the internal shared GPU cluster failed because the queue was saturated, halting LLM content generation
for several days. Community services such as Ollama offer an interim fallback, yet our throughput is
tightly coupled to external demand patterns we cannot influence. While we have recently been granted
an allocation on the academic HPC system Kisski to supplement our internal resources, the usable quota
is still fairly limited. In consequence, we cannot sustain the GPU-hours required for the full end-to-end
workflow on all 90,000 some resources indexed in OERSI; instead, we have reduced scope to an MVP
that generates descriptions only for a curated, impact-ranked whitelist of resources.'” We feel that such
issues are not unique to us or our use case, and sharing them with the community also sheds light on
the real-life applicability and constraints that users face.

6. Related Work

Several recent studies combine LLMs or NLP with knowledge graphs to enrich, generate, or validate
metadata, or to align schemas. Kumar et al. propose an enterprise framework that uses LLMs to
unify heterogeneous data sources into an activity-centric knowledge graph, automating entity/relation
extraction and “semantic enrichment” [15]. Taboada et al. introduce MILA [16], an LLM-based ontology
matching pipeline that uses a retrieve-and-prompt strategy to align schema entities. Others argue that
LLMs can significantly accelerate core KG and ontology engineering tasks [17], including modeling,
alignment, and population. Leal et al. [18] proposed an LLM-based zero-shot approach for named
entity linking in educational texts, using retrieval-augmented prompts to connect content to knowledge
organization systems. In library contexts, LLMs have been used to generate descriptive metadata; for
instance, Huang et al. [19] applied GPT-4 to web archive collections, auto-generating titles and abstracts.
They reported cost savings but also noted that LLM outputs can be lower quality than human-curated
metadata and that hallucinations remain a challenge.

In the education domain, LLMs are also applied for metadata generation. Viswanathan et al. [20] used
GPT-4 to segment and summarize lecture transcripts, extracting learning objectives, key definitions,
and questions. Beyond generation, a key challenge is addressing metadata consistency and integrating
heterogeneous educational resources. Tavakoli et al. [21], analyzing OER metadata, underscored that

"See the Appendix for links to examples in production.


https://kisski.gwdg.de/en/leistungen/2-02-llm-service/

high-quality, consistent metadata is critical for search and recommendation. The heterogeneity of
educational metadata, with diverse schemas and vocabularies, poses a persistent problem for federa-
tion, leading to issues like imprecise term definitions and incomplete conventions [22]. Linked Data
approaches have sought to address this interoperability: for example, mEducator [23] demonstrated pub-
lishing OERs in RDF and linking to external vocabularies, while Pereira et al. [24] surveyed how Linked
Data can enhance resource interoperability and personalization. Integration projects like LinkedUp [25]
have aimed to aggregate learning data into unified KGs. Similarly, Telnov et al. [26] implemented a
semantic educational portal using RDF triplestores. Liang et al. [27] also tackled metadata harmonization
for language resource repositories using Linked Data. Despite these efforts, aligning schemas across
diverse domains often requires considerable mapping or transformation.

Our work with MOP extends these lines of research by combining LLM-based content analysis
with semantic integration mechanisms. It aims to automatically infer metadata from resource content,
demonstrating a practical application effective even within resource-limited public institutes.

7. Conclusion

In this paper we have presented MOP, our domain-agnostic intermediate layer for automatically
generating metadata fields tailored for incorporation into scientific knowledge graphs. The modular
architecture is comprised of three primary components: the loader, the generator, and the updater.
The loader module fetches metadata from a data source — we use OERSI, a federated knowledge graph
system, as an example use case — and then extracts the full text of the resource via its direct download
link. In the next step, the generator module queries an LLM to generate a summary of the full text
for use as input in all downstream tasks. Subsequently, the LLM generates any of a configurable set
of metadata fields, which are validated against a predefined JSON schema to ensure compliance with
the knowledge graph schema. Finally, the updater module uses an API provided by OERSI to update
the LLM generated fields within the system. This process runs asynchronously to OERSI’s metadata
harvesting process, allowing for flexible updates. Although development has been done using OERSI
and focusing on OER, the code, available in its entirety on GitLab, is fully reusable and adaptable to
other usage scenarios.

While our workflow is already productive and deployed on our production system, the coverage
has been complicated by the availability of compute resources. The resources required for the entire
pipeline to run over the more than 90,000 resources indexed in OERSI is not available to us at this time.
Therefore, we have launched our MVP on our production system with a small number of resources
enriched with descriptions, with more to be added on an ongoing basis. (See the Appendix for links to
some examples.) If and when additional infrastructure becomes available, the selection of resources
and metadata fields can easily be expanded. Additional future work includes refining the generation of
subject labels and potentially customizing LLMs with QLORA [28], which could lead to better results
for our use case with little need for more compute resources.

We share our insights and experience in this work to shed more light on how language models can
be applied to enhance knowledge graph metadata, used on a smaller scale with limited resources, and
with this highlight both the limitations and the feasibility.
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A. Example Records

As MOP has only recently been integrated into the production system, there are currently few records
with LLM-generated content available. For convenience, we provide links here to collections in which
all (or, in the final case, most) records contain this content.

+ Collection of texts and reference works about archaeology and ancient history:.
+ Collection of videos explaining German laws around data privacy and security.
+ Collection of videos demonstrating principles of chemistry.

+ Collection of textbooks about medical terminology.

B. LLM Comparison

We performed a small comparison of three LLMs which were recommended for our use case by the
LLM Integration Lead of our institute. The full output results from this comparison are available here.
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